Search results for: fuzzy sets
184 Sulphur-Mediated Precipitation of Pt/Fe/Co/CrIons in Liquid-Liquid and Gas-Liquid Chloride Systems
Authors: J. Siame, H. Kasaini
Abstract:
The proof of concept experiments were conducted to determine the feasibility of using small amounts of Dissolved Sulphur (DS) from the gaseous phase to precipitate platinum ions in chloride media. Two sets of precipitation experiments were performed in which the source of sulphur atoms was either a thiosulphate solution (Na2S2O3) or a sulphur dioxide gas (SO2). In liquid-liquid (L-L) system, complete precipitation of Pt was achieved at small dosages of Na2S2O3 (0.01 – 1.0 M) in a time interval of 3-5 minutes. On the basis of this result, gas absorption tests were carried out mainly to achieve sulphur solubility equivalent to 0.018 M. The idea that huge amounts of precious metals could be recovered selectively from their dilute solutions by utilizing the waste SO2 streams at low pressure seemed attractive from the economic and environmental point of views. Therefore, mass transfer characteristics of SO2 gas associated with reactive absorption across the gas-liquid (G-L) interface were evaluated under different conditions of pressure (0.5 – 2 bar), solution temperature ranges from 20 – 50 oC and acid strength (1 – 4 M, HCl). This paper concludes with information about selective precipitation of Pt in the presence of cations (Fe2+, Co2+, and Cr3+) in a CSTR and recommendation to scale up laboratory data to industrial pilot scale operations.Keywords: CSTR, diffusivity, platinum, selective precipitation, sulphur dioxide, thiosulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157183 Protein Graph Partitioning by Mutually Maximization of cycle-distributions
Authors: Frank Emmert Streib
Abstract:
The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.Keywords: Graph partitioning, unweighted graph, protein domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356182 M2LGP: Mining Multiple Level Gradual Patterns
Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala
Abstract:
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.Keywords: Gradual Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500181 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines
Authors: Anis Gharbi
Abstract:
This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.
Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002180 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.
Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535179 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713178 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering
Authors: Yogita, Durga Toshniwal
Abstract:
Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.
Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637177 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning
Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685176 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.
Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498175 Performance of Heterogeneous Autoregressive Models of Realized Volatility: Evidence from U.S. Stock Market
Authors: Petr Seďa
Abstract:
This paper deals with heterogeneous autoregressive models of realized volatility (HAR-RV models) on high-frequency data of stock indices in the USA. Its aim is to capture the behavior of three groups of market participants trading on a daily, weekly and monthly basis and assess their role in predicting the daily realized volatility. The benefits of this work lies mainly in the application of heterogeneous autoregressive models of realized volatility on stock indices in the USA with a special aim to analyze an impact of the global financial crisis on applied models forecasting performance. We use three data sets, the first one from the period before the global financial crisis occurred in the years 2006-2007, the second one from the period when the global financial crisis fully hit the U.S. financial market in 2008-2009 years, and the last period was defined over 2010-2011 years. The model output indicates that estimated realized volatility in the market is very much determined by daily traders and in some cases excludes the impact of those market participants who trade on monthly basis.Keywords: Global financial crisis, heterogeneous autoregressive model, in-sample forecast, realized volatility, U.S. stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476174 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35173 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity
Authors: M. Siosemarde, M. Byzedi
Abstract:
Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792172 Morphology of Parts of the Middle Benue Trough of Nigeria from Spectral Analysis of Aeromagnetic Data (Akiri Sheet 232 and Lafia Sheet 231)
Authors: B. S. Jatau, Nandom Abu
Abstract:
Structural interpretation of aeromagnetic data and Landsat imagery over the Middle Benue Trough was carried out to determine the depth to basement, delineate the basement morphology and relief, and the structural features within the basin. The aeromagnetic and Landsat data were subjected to various image and data enhancement and transformation routines. Results of the study revealed lineaments with trend directions in the N-S, NE-SW, NWSE and E-W directions, with the NE-SW trends been dominant. The depths to basement within the trough were established to be at 1.8, 0.3 and 0.8km, as shown from the spectral analysis plot. The Source Parameter Imaging (SPI) plot generated showed the centralsouth/ eastern portion of the study area as being deeper in contrast to the western-south-west portion. The basement morphology of the trough was interpreted as having parallel sets of micro-basins which could be considered as grabens and horsts in agreement with the general features interpreted by early workers.
Keywords: Morphology, Middle Benue Trough, Spectral Analysis, Source Parameter Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4066171 Alignment of a Combined Groin for Flow through a Straight Open Channel
Authors: M. Alauddin, M. A. Ullah, M. Alom, M. N. Islam
Abstract:
The rivers in Bangladesh are highly unstable having loose boundaries, mild slope of water surface and bed, irregular siltation of huge sediment coming from upstream, among others. The groins are installed in the river bank to deflect the flowing water away from the vulnerable zones. The conventional groins are found to be unstable and ineffective. The combined groin having both impermeable and permeable components in the same structure improves the flow field to function better over others. The main goal of this study is to analyze the hydraulic characteristics induced by the combined groins of different alignments by using a 2D numerical model, iRIC Nays2DH. In this numerical simulation, the K-ε model for turbulence and Cubic Interpolation Pseudo-particle (CIP) method for advective terms are utilized. A particular flow condition is applied in the channel for all sets of groins with different alignments. The simulation results reveal that the combined groins alter the flow patterns considerably, with no significant recirculation of flow in the groin field. The effect of different alignments of groins is found somewhat different. Based on hydraulic features caused by the groins, the combined groin that aligns the permeable component towards slightly downstream performs better over others.
Keywords: Combined groin, alignment, hydraulic characteristics, numerical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407170 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.
Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375169 Entrepreneurship Cure for Economic Under-Development in Nigeria: A Theoretical Perspective
Authors: Kurotimi Maurice Fems, Abara Onu, Francis W. D. Poazi
Abstract:
Scholars and development economists believe that the development of an economy depends largely on the creative and innovative ingenuity of its entrepreneurs. Others however, are of the opinion that the lack of entrepreneurs or entrepreneurial activities is not a constraint to economic development in any economy, particularly Nigeria. This paper sets out to explore the connectivity between entrepreneurship and economic development from a theoretical point of view, principally in Nigeria. A desk research approach was adopted where a conglomerate of literatures was reviewed on how entrepreneurship can spur economic growth or otherwise. The findings reveal that entrepreneurship is vital to the development of Nigeria and that, universities and other Higher Education Institutions must play the vital role of educating the people on entrepreneurship skills and competences. However, the problems and difficulties entrepreneurs face in Nigeria and the same problems suffocating the growth and development of its economy. Therefore, entrepreneurship cannot be said to be the sole cure for economic under-development in Nigeria but rather other factors such as empowering and granting the institutions autonomy and the provision of infrastructural capability, such as consistent electricity generation and supply, good system of transportation, implementing proposed economic policies in an effective and efficient manner etc., the cultural beliefs and mindset of the citizenry, was also found to be key in the development of any economy.Keywords: Entrepreneurship, entrepreneurial, economic underdevelopment, unemployable, oil boom, infrastructural under-development, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581168 Challenges Facing Housing Developers to Deliver Zero Carbon Homes in England
Authors: M. Osmani, A. O'Reilly
Abstract:
Housebuilders in England have been the target of numerous government policies in recent years promoting increased productivity and affordability. As a result, the housebuilding industry is currently faced with objectives to improve the affordability and sustainability of new homes whilst also increasing production rates to 240,000 per year by 2016.Yet amidst a faltering economic climate, the UK Government is forging ahead with the 'Code for Sustainable Homes', which includes stringent sustainable standards for all new homes and sets ambitious targets for the housebuilding industry, the culmination of which is the production of zero carbon homes by 2016.Great uncertainty exists amongst housebuilders as to the costs, benefits and risks of building zero carbon homes. This paper examines the key barriers to zero carbon homes from housebuilders- perspective. A comprehensive opinion on the challenges to deliver zero carbon homes is gathered through a questionnaire survey issued to the major housing developers in England. The study found that a number of cultural, legislative, and financial barriers stand in the way of the widespread construction of zero carbon homes. The study concludes with several recommendations to both the Government and the housebuilding industry to address the barriers that hinder a successful delivery of zero carbon homes in England.
Keywords: Zero carbon homes, Code for Sustainable Homes, housebuilders, England
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086167 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations
Authors: M. Mazraehli, F. Mehrabani, S. Zare
Abstract:
In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.
Keywords: Distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799166 A Study on the User Experience Design of Mobile Twitter Application
Authors: Jeong Hoon Lee, Jin Hwan Yu
Abstract:
The number of people using SNS with their mobile devices is soaring. This research focuses on the Twitter service that has the most third-party applications and delved into the fact that there were not sufficient studies on the UX design aspects of Twitter applications. Among social network services which have emerged as a major social topic lately, this research try to analyze the UX design of the Twitter application which is also called micro-blogging service. Therefore this research sets its goal to draw components of the UX design aspect of the Tweeter application on which there are not enough analysis yet. Moreover, this research suggests improvement of mobile application which will assure better users- experience. In order to analyze the UX design aspect of the mobile twitter application, with relevant document and user research, evaluating factors of the UX Design which would affect users- experience were organized. The subjects for cases were selected among six paid and free social networking applications that had been consistently ranked from 1st to 100th in the Korean application store during May, 2012 after closely monitoring the rank. From May 15th to May 11th in 2012, in accordance with the evaluating standard, surveys were conducted in a form of interviews with 20 subjects who have used the Twitter application to find out problems and solutions for the UX design of the mobile Twitter application.
Keywords: Social network service, twitter, user experience design, interface design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702165 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Authors: V Krishnaveni, S Jayaraman, K Ramadoss
Abstract:
The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.
Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193164 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376163 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset
Authors: Sunita Jahirabadkar, Parag Kulkarni
Abstract:
Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.
Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018162 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel
Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini
Abstract:
Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.
Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325161 Investigation of Corona wind Effect on Heat and Mass Transfer Enhancement
Authors: R.Karami, B.Kamkari, K.Kashefi
Abstract:
Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using very small amount of energy. Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which is charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over water surface. The study was focused on the effect of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e. with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancements were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively.Keywords: Electrohydodynamics (EHD), corona wind, high electric field, Evaporation enhancement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895160 Using the Semantic Web in Ubiquitous and Mobile Computing: the Morfeo Experience
Authors: José M. Cantera, Miguel Jiménez, Genoveva López, Javier Soriano
Abstract:
With the advent of emerging personal computing paradigms such as ubiquitous and mobile computing, Web contents are becoming accessible from a wide range of mobile devices. Since these devices do not have the same rendering capabilities, Web contents need to be adapted for transparent access from a variety of client agents. Such content adaptation results in better rendering and faster delivery to the client device. Nevertheless, Web content adaptation sets new challenges for semantic markup. This paper presents an advanced components platform, called MorfeoSMC, enabling the development of mobility applications and services according to a channel model based on Services Oriented Architecture (SOA) principles. It then goes on to describe the potential for integration with the Semantic Web through a novel framework of external semantic annotation of mobile Web contents. The role of semantic annotation in this framework is to describe the contents of individual documents themselves, assuring the preservation of the semantics during the process of adapting content rendering, as well as to exploit these semantic annotations in a novel user profile-aware content adaptation process. Semantic Web content adaptation is a way of adding value to and facilitates repurposing of Web contents (enhanced browsing, Web Services location and access, etc).
Keywords: Semantic web, ubiquitous and mobile computing, web content transcoding, semantic markup, mobile computing middleware and services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632159 Students, Knowledge and Employability
Authors: James Moir
Abstract:
Citizens are increasingly are provided with choice and customization in public services and this has now also become a key feature of higher education in terms of policy roll-outs on personal development planning (PDP) and more generally as part of the employability agenda. The goal here is to transform people, in this case graduates, into active, responsible citizen-workers. A key part of this rhetoric and logic is the inculcation of graduate attributes within students. However, there has also been a concern with the issue of student lack of engagement and perseverance with their studies. This paper sets out to explore some of these conceptions that link graduate attributes with citizenship as well as the notion of how identity is forged through the higher education process. Examples are drawn from a quality enhancement project that is being operated within the context of the Scottish higher education system. This is further framed within the wider context of competing and conflicting demands on higher education, exacerbated by the current worldwide economic climate. There are now pressures on students to develop their employability skills as well as their capacity to engage with global issues such as behavioural change in the light of environmental concerns. It is argued that these pressures, in effect, lead to a form of personalization that is concerned with how graduates develop their sense of identity as something that is engineered and re-engineered to meet these demands.Keywords: students, higher education, employability, knowledge, personal development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701158 Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter
Authors: Sandipan Chakroborty, Goutam Saha
Abstract:
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel- Frequency Cepstral Coefficients (IMFCC) is useful feature set for SI, which contains complementary information present in high frequency region. This paper introduces the Gaussian shaped filter (GF) while calculating MFCC and IMFCC in place of typical triangular shaped bins. The objective is to introduce a higher amount of correlation between subband outputs. The performances of both MFCC & IMFCC improve with GF over conventional triangular filter (TF) based implementation, individually as well as in combination. With GMM as speaker modeling paradigm, the performances of proposed GF based MFCC and IMFCC in individual and fused mode have been verified in two standard databases YOHO, (Microphone Speech) and POLYCOST (Telephone Speech) each of which has more than 130 speakers.Keywords: Gaussian Filter, Triangular Filter, Subbands, Correlation, MFCC, IMFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449157 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization
Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao
Abstract:
Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.Keywords: Minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013156 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713155 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.
Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421