Search results for: Two phase flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3628

Search results for: Two phase flow

2368 Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube

Authors: H. Almohammadi, Sh. Nasiri Vatan, E. Esmaeilzadeh, A. Motezaker, A. Nokhosteen

Abstract:

In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.

Keywords: Convective heat transfer, Laminar flow regime, Nanofluids, Pressure drop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767
2367 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
2366 Rotor Flow Analysis using Animplicit Harmonic Balance Method

Authors: D. Im, S. Choi, H. Kwon, S. H. Park, J. H. Kwon

Abstract:

This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.

Keywords: Design optimization, Implicit harmonic balancemethod, number of harmonics, rotor flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
2365 A Thirteen-Level Asymmetrical Cascaded H-Bridge Single Phase Inverter

Authors: P. Varalaxmi, A. Kirubakaran

Abstract:

This paper presents a thirteen-level asymmetrical cascaded H-bridge single phase inverter. In this configuration, the desired output voltage level is achieved by connecting the DC sources in different combinations by triggering the switches. The modes of operation are explained well for positive level generations. Moreover, a comparison is made with conventional topologies of diode clamped, flying capacitors and cascaded-H-bridge and some recently proposed topologies to show the significance of the proposed topology in terms of reduced part counts. The simulation work has been carried out in MATLAB/Simulink environment. The experimental work is also carried out for lower rating to verify the performance and feasibility of the proposed topology. Further the results are presented for different loading conditions.

Keywords: Multilevel inverter, pulse width modulation, total harmonic distortion, THD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
2364 Weakened Vortex Shedding from a Rotating Cylinder

Authors: Sharul S. Dol

Abstract:

An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, λ between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for λ < 2.0. Alternate vortex shedding is weak and close to being suppressed at λ = 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.

Keywords: Circulation, particle image velocimetry, rotating circular cylinder, smoke-wire flow visualization, Strouhal number, vortex shedding, vortex street.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
2363 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller

Authors: Khaled A. Madi

Abstract:

Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.

Keywords: Power, inverter, PWM, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4436
2362 Speciation of Iron (III) Oxide Nanoparticles and Other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Authors: Michael P. Herring, Lavrent Khachatryan, Barry Dellinger

Abstract:

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1--MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron (III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by gfactors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77 K after accumulation over a multitude of experiments. Additionally, a high valence Fe (IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe (IV) --- O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Keywords: Cryogenic trapping, EPFRs, dendrimer, Fe2O3 doped silica, soot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
2361 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Nwogu, Edward Gobina

Abstract:

A dip-coating process has been used to form an asymmetric silica membrane with improved membrane performance and reproducibility. First, we deposited repeatedly silica on top of a commercial alumina membrane support to improve its structural make up. The membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to the support, the dual-layer process improves the gas flow rates. For the scientific applications for natural gas purification, CO2, CH4 and H2 gas flow rates were. In addition, the membrane selectively separated hydrogen.

Keywords: Gas permeation, Silica membrane, separation factor, membrane layer thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
2360 Study and Design of Patient Flow at the Medicine Department of a University Hospital

Authors: P. Prudtikul, S. Pathomsiri

Abstract:

Most, if not all, public hospitals in Thailand have encountered a common problem regarding the increasing demand for medical services. The increasing number of patients causes so much strain on the hospital-s services, over-crowded, overloaded working hours, staff fatigue, medical error and long waiting time. This research studied the characteristics of operational processes of the medical care services at the medicine department in a large public university hospital. The research focuses on details regarding methods, procedures, processes, resources, and time management in overall processes. The simulation model is used as a tool to analyze the impact of various improvement strategies.

Keywords: Patient flow, medicine department, simulation, outpatient department.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
2359 Fluid Flow and Heat Transfer Structures of Oscillating Pipe Flows

Authors: Yan Su, Jane H. Davidson, F. A. Kulacki

Abstract:

The RANS method with Saffman-s turbulence model was employed to solve the time-dependent turbulent Navier-Stokes and energy equations for oscillating pipe flows. The method of partial sums of the Fourier series is used to analyze the harmonic velocity and temperature results. The complete structures of the oscillating pipe flows and the averaged Nusselt numbers on the tube wall are provided by numerical simulation over wide ranges of ReA and ReR. Present numerical code is validated by comparing the laminar flow results to analytic solutions and turbulence flow results to published experimental data at lower and higher Reynolds numbers respectively. The effects of ReA and ReR on the velocity, temperature and Nusselt number distributions have been di scussed. The enhancement of the heat transfer due to oscillating flows has also been presented. By the way of analyzing the overall Nusselt number over wide ranges of the Reynolds number Re and Keulegan- Carpenter number KC, the optimal ratio of the tube diameter over the oscillation amplitude is obtained based on the existence of a nearly constant optimal KC number. The potential application of the present results in sea water cooling has also been discussed.

Keywords: Keulegan-Carpenter number, Nusselt number, Oscillating pipe flows, Reynolds number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
2358 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T\infty)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0)  the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.

Keywords: Magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2357 Structural Behavior of Incomplete Box Girder Bridges Subjected to Unpredicted Loads

Authors: E. H. N. Gashti, J. Razzaghi, K. Kujala

Abstract:

In general, codes and regulations consider seismic loads only for completed structures of the bridges while, evaluation of incomplete structure of bridges, especially those constructed by free cantilever method, under these loads is also of great importance. Hence, this research tried to study the behavior of incomplete structure of common bridge type (box girder bridge), in construction phase under vertical seismic loads. Subsequently, the paper provided suitable guidelines and solutions to resist this destructive phenomenon. Research results proved that use of preventive methods can significantly reduce the stresses resulted from vertical seismic loads in box cross sections to an acceptable range recommended by design codes.

Keywords: Box girder bridges, Prestress loads, Free cantilever method, Seismic loads, Construction phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
2356 Improvement Plant Layout Using Systematic Layout Planning (SLP) for Increased Productivity

Authors: W. Wiyaratn, A. Watanapa

Abstract:

The objective of this research is to study plant layout of iron manufacturing based on the systematic layout planning pattern theory (SLP) for increased productivity. In this case study, amount of equipments and tools in iron production are studied. The detailed study of the plant layout such as operation process chart, flow of material and activity relationship chart has been investigated. The new plant layout has been designed and compared with the present plant layout. The SLP method showed that new plant layout significantly decrease the distance of material flow from billet cutting process until keeping in ware house.

Keywords: Plant layout, Systematic Layout Planning, Flowanalysis, Activity relationship chart

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13901
2355 A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Authors: K. Derradji Belloum, A. Moussi

Abstract:

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

Keywords: AC chopper, Current controller, Distortion factor, Hysteresis, Input Power Factor, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594
2354 Shaping the Input Side Current Waveform of a 3-ϕ Rectifier into a Pure Sine Wave

Authors: Sikder Mohammad Faruk, Mir Mofajjal Hossain, Muhibul Haque Bhuyan

Abstract:

In this investigative research paper, we have presented the simulation results of a three-phase rectifier circuit to improve the input side current using the passive filters, such as capacitors and inductors at the output and input terminals of the rectifier circuit respectively. All simulation works were performed in a personal computer using the PSPICE simulator software, which is a virtual circuit design and simulation software package. The output voltages and currents were measured across a resistive load of 1 k. We observed that the output voltage levels, input current wave shapes, harmonic contents through the harmonic spectrum, and total harmonic distortion improved due to the use of such filters.

Keywords: input current wave, three-phase rectifier, passive filter, PSPICE Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
2353 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India

Authors: Chetan R. Patel, G. J. Joshi

Abstract:

Present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using videography techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.

Keywords: Arterial Road, Capacity, Dynamic Equivalency Factor, Effect of Non motorized mode, Side friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
2352 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: Common rail, hydrogen engine, port injection, wave propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
2351 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.

Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166
2350 Clinical Parameters Response to Low-Level Laser versus Monochromatic Near-Infrared Photo Energy in Diabetic Patients with Peripheral Neuropathy

Authors: Abeer A. Abdelhamed

Abstract:

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common microvascular complications of type 2 diabetes. Loss of sensation is thought to contribute to a lack of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low-level laser (LLL) and monochromatic near-infrared photo energy (MIRE) on pain, cutaneous sensation, static stability, and index of lower limb blood flow in diabetic patients with peripheral neuropathy. Methods: Forty diabetic patients with peripheral neuropathy were recruited for participation in this study. They were divided into two groups: The MIRE group, which contained 20 patients, and the LLL group, which contained 20 patients. All patients who participated in the study had been subjected to various physical assessment procedures, including pain, cutaneous sensation, Doppler flow meter, and static stability assessments. The baseline measurements were followed by treatment sessions that were conducted twice a week for six successive weeks. Results: The statistical analysis of the data revealed significant improvement of pain in both groups, with significant improvement in cutaneous sensation and static balance in the MIRE group compared to the LLL group; on the other hand, the results showed no significant differences in lower limb blood flow between the groups. Conclusion: LLL and MIRE can improve painful symptoms in patients with diabetic neuropathy. On the other hand, MIRE is also useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Keywords: Diabetic neuropathy, Doppler flow meter, –Lowlevel laser, Monochromatic near-infrared photo energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
2349 Study on the Optimization of Completely Batch Water-using Network with Multiple Contaminants Considering Flow Change

Authors: Jian Du, Shui Hong Hong, Lu Meng, Qing Wei Meng

Abstract:

This work addresses the problem of optimizing completely batch water-using network with multiple contaminants where the flow change caused by mass transfer is taken into consideration for the first time. A mathematical technique for optimizing water-using network is proposed based on source-tank-sink superstructure. The task is to obtain the freshwater usage, recycle assignments among water-using units, wastewater discharge and a steady water-using network configuration by following steps. Firstly, operating sequences of water-using units are determined by time constraints. Next, superstructure is simplified by eliminating the reuse and recycle from water-using units with maximum concentration of key contaminants. Then, the non-linear programming model is solved by GAMS (General Algebra Model System) for minimum freshwater usage, maximum water recycle and minimum wastewater discharge. Finally, numbers of operating periods are calculated to acquire the steady network configuration. A case study is solved to illustrate the applicability of the proposed approach.

Keywords: Completely batch process, flow change, multiple contaminants, water-using network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2348 Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach

Authors: R. Bhargava, Sonam Singh

Abstract:

In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.

Keywords: EFGM, MHD, Oscillatory stretching sheet, Unsteady, Viscoelastic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
2347 A Text Mining Technique Using Association Rules Extraction

Authors: Hany Mahgoub, Dietmar Rösner, Nabil Ismail, Fawzy Torkey

Abstract:

This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.

Keywords: Text mining, data mining, association rule mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4437
2346 An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya

Authors: Nasser M. Amaitik, Nabil A. Alfagi

Abstract:

The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.

Keywords: Asbuilt, History, IMD, MMRA, PDBMS & PRMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
2345 Fault Classification of a Doubly FED Induction Machine Using Neural Network

Authors: A. Ourici

Abstract:

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
2344 Ultra Fast Solid State Ground Fault Isolator

Authors: I Made Darmayuda, Zhou Jun, Krishna Mainali, Simon Ng Sheung Yan, Saisundar S, Eran Ofek

Abstract:

Personnel protection devices are cardinal in safety hazard applications. They are widely used in home, office and in industry environments to reduce the risk of lethal shock to human being and equipment safety. This paper briefly reviews various personnel protection devices also describes the basic working principle of conventional ground fault circuit interrupter (GFCI) or ground fault isolator (GFI), its disadvantages and ways to overcome the disadvantages with solid-state relay (SSR) based GFI with ultrafast response up on fault implemented in printed circuit board. This solid state GFI comprises discrete MOSFET based alternating current (AC) switches, linear optical amplifier, photovoltaic isolator and sense resistor. In conventional GFI, current transformer is employed as a sensing element to detect the difference in current flow between live and neutral conductor. If there is no fault in equipment powered through GFI, due to insulation failure of internal wires and windings of motors, both live and neutral currents will be equal in magnitude and opposite in phase.

Keywords: current transformer, electrocution, GFCI, GFI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
2343 Sri Lanka – Middle East Labour Migration Corridor: Trends, Patterns and Structural Changes

Authors: Dinesha Siriwardhane, Indralal De Silva, Sampath Amaratunge

Abstract:

Objective of this study is to explore the recent trends, patterns and the structural changes in the labour migration from Sri Lanka to Middle East countries and to discuss the possible impacts of those changes on the remittance flow. Study uses secondary data published by Sri Lanka Bureau of Foreign Employment and Central Bank. Thematic analysis of the secondary data revealed that the migration for labour has increased rapidly during past decades. Parallel with that the gender and the skill composition of the migration flow has been changing. Similarly, the destinations for male migration have changed over the period. These show positive implications on the international remittance receipts to the country.

Keywords: Labour migration, Remittances, Middle East, Sri Lanka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
2342 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption

Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman

Abstract:

In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.

Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
2341 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes

Authors: Siddharth Ahuja, T. M. Muruganandam

Abstract:

An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.

Keywords: Analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
2340 About the Structural Stability of the Model of the Nonelectroneutral Current Sheath

Authors: V.V. Lyahov, V.M. Neshchadim

Abstract:

The structural stability of the model of a nonelectroneutral current sheath is investigated. The stationary model of a current sheath represents the system of four connected nonlinear differential first-order equations and thus they should manifest structural instability property, i.e. sensitivity to the infinitesimal changes of parameters and starting conditions. Domains of existence of the solutions of current sheath type are found. Those solutions of the current sheath type are realized only in some regions of sevendimensional space of parameters of the problem. The phase volume of those regions is small in comparison with the whole phase volume of the definition range of those parameters. It is shown that the offered model of a nonelectroneutral current sheath is applicable for theoretical interpretation of the bifurcational current sheaths observed in the magnetosphere.

Keywords: Distribution function, electromagnetic field, magnetoactive plasma, nonelectroneutral current sheath, structural instability, bifurcational current sheath.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2339 The Knapsack Sharing Problem: A Tree Search Exact Algorithm

Authors: Mhand Hifi, Hedi Mhalla

Abstract:

In this paper, we study the knapsack sharing problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of a tree search for optimally solving the problem. The used method combines two complementary phases: a reduction interval search phase and a branch and bound procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for decomposing the problem into a series of knapsack problems. Second, the tree search procedure is applied in order to attain a set of optimal capacities characterizing the knapsack problems. Finally, the performance of the proposed optimal algorithm is evaluated on a set of instances of the literature and its runtime is compared to the best exact algorithm of the literature.

Keywords: Branch and bound, combinatorial optimization, knap¬sack, knapsack sharing, heuristics, interval reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559