Search results for: pulsing flow
1074 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs Oxidation
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Ts. Petrova, Tatyana T. Tabakova
Abstract:
This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.Keywords: Copper-manganese-chromium oxide catalysts, CO, deep oxidation, volatile organic compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351073 ROSA/LSTF Test on Pressurized Water Reactor Steam Generator Tube Rupture Accident Induced by Main Steam Line Break with Recovery Actions
Authors: Takeshi Takeda
Abstract:
An experiment was performed for the OECD/NEA ROSA-2 Project employing the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated a steam generator tube rupture (SGTR) accident induced by main steam line break (MSLB) with operator recovery actions in a pressurized water reactor (PWR). The primary pressure decreased to the pressure level nearly-equal to the intact steam generator (SG) secondary-side pressure even with coolant injection from the high-pressure injection (HPI) system of emergency core cooling system (ECCS) into cold legs. Multi-dimensional coolant behavior appeared such as thermal stratification in both hot and cold legs in intact loop. The RELAP5/MOD3.3 code indicated the insufficient predictions of the primary pressure, the SGTR break flow rate, and the HPI flow rate, and failed to predict the fluid temperatures in the intact loop hot and cold legs. Results obtained from the comparison among three LSTF SGTR-related tests clarified that the thermal stratification occurs in the horizontal legs by different mechanisms.
Keywords: LSTF, SGTR, thermal stratification, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7871072 Microencapsulation of Ascorbic Acid by Spray Drying: Influence of Process Conditions
Authors: Addion Nizori, Lan T.T. Bui, Darryl M. Small
Abstract:
Ascorbic acid (AA), commonly known as vitamin C, is essential for normal functioning of the body and maintenance of metabolic integrity. Among its various roles are as an antioxidant, a cofactor in collagen formation and other reactions, as well as reducing physical stress and maintenance of the immune system. Recent collaborative research between the Australian Defence Science and Technology Organisation (DSTO) in Scottsdale, Tasmania and RMIT University has sought to overcome the problems arising from the inherent instability of ascorbic acid during processing and storage of foods. The recent work has demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. The purpose of this current study has been focused upon the influence of spray drying conditions on the properties of encapsulated ascorbic acid. The process was carried out according to a central composite design. Independent variables were: inlet temperature (80-120° C) and feed flow rate (7-14 mL/minute). Process yield, ascorbic acid loss, moisture content, water activity and particle size distribution were analysed as responses. The results have demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. Vitamin retention, moisture content, water activity and process yield were influenced positively by inlet air temperature and negatively by feed flow rate.
Keywords: Microencapsulation, spray drying, ascorbic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44561071 Clarification of Synthetic Juice through Spiral Wound Ultrafiltration Module at Turbulent Flow Region and Cleaning Study
Authors: Vijay Singh, Chandan Das
Abstract:
Synthetic juice clarification was done through spiral wound ultrafiltration (UF) membrane module. Synthetic juice was clarified at two different operating conditions, such as, with and without permeates recycle at turbulent flow regime. The performance of spiral wound ultrafiltration membrane was analyzed during clarification of synthetic juice. Synthetic juice was the mixture of deionized water, sucrose and pectin molecule. The operating conditions are: feed flowrate of 10 lpm, pressure drop of 413.7 kPa and Reynolds no of 5000. Permeate sample was analyzed in terms of volume reduction factor (VRF), viscosity (Pa.s), ⁰Brix, TDS (mg/l), electrical conductivity (μS) and turbidity (NTU). It was observe that the permeate flux declined with operating time for both conditions of with and without permeate recycle due to increase of concentration polarization and increase of gel layer on membrane surface. For without permeate recycle, the membrane fouling rate was faster compared to with permeate recycle. For without permeate recycle, the VRF rose up to 5 and for with recycle permeate the VRF is 1.9. The VRF is higher due to adsorption of solute (pectin) molecule on membrane surface and resulting permeateflux declined with VRF. With permeate recycle, quality was within acceptable limit. Fouled membrane was cleaned by applying different processes (e.g., deionized water, SDS and EDTA solution). Membrane cleaning was analyzed in terms of permeability recovery.Keywords: Synthetic juice, Spiral wound, ultrafiltration, Reynolds No, Volume reduction factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561070 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran
Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh
Abstract:
Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811069 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.
Keywords: Rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9111068 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.
Keywords: Amplitude, NACA0012, tubercles, unmanned space robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6591067 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations
Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh
Abstract:
Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.
Keywords: Annular fins, condenser heat transfer coefficient, heat pipe, natural convection, tilt angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8471066 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings
Authors: A. W. J. Wong, I. H. Ibrahim
Abstract:
Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13021065 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric
Authors: J. R. Mudakavi, K. Puttanna
Abstract:
Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.
Keywords: Activated carbon fabric, adsorption, drinking water, hexavalent chromium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10441064 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell
Authors: M. Hossain, H. P. Zhu, A. B. Yu
Abstract:
This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.Keywords: Discrete element method, granular rheology, non-spherical particles, regime transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15121063 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal
Abstract:
Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.
Keywords: Energy recovery, organic waste, urban energy modelling with INSEL, waste flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9441062 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio
Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot
Abstract:
In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.Keywords: Aspect Ratio, Channel, Jet, Mixed convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21781061 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant
Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin
Abstract:
Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.
Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21471060 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder
Authors: Avinash Chandra, R. P. Chhabra
Abstract:
Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34151059 The Applications of Four Fingers Theory: The Proof of 66 Acupoints under the Human Elbow and Knee
Authors: Chih-I. Tsai, Yu-Chien. Lin
Abstract:
Through experiences of clinical practices, it is discovered that locations on the body at a level of four fingerbreadth above and below the joints are the points at which muscles connect to tendons, and since the muscles and tendons possess opposite characteristics, muscles are full of blood but lack qi, while tendons are full of qi but lack blood, these points on our body become easily blocked. It is proposed that through doing acupuncture or creating localized pressure to the areas four fingerbreadths above and below our joints, with an elastic bandage, we could help the energy, also known as qi, to flow smoothly in our body and further improve our health. Based on the Four Fingers Theory, we understand that human height is 22 four fingerbreadths. In addition, qi and blood travel through 24 meridians, 50 times each day, and they flow through 6 cun with every human breath. We can also understand the average number of human heartbeats is 75 times per minute. And the function of qi-blood circulation system in Traditional Chinese Medicine is the same as the blood circulation in Western Medical Science. Informed by Four Fingers Theory, this study further examined its applications in acupuncture practices. The research question is how Four Fingers Theory proves what has been mentioned in Nei Jing that there are 66 acupoints under a human’s elbow and knee. In responding to the research question, there are 66 acupoints under a human’s elbow and knee. Four Fingers Theory facilitated the creation of the acupuncture naming and teaching system. It is expected to serve as an approachable and effective way to deliver knowledge of acupuncture to the public worldwide.
Keywords: Four Fingers theory, Meridians circulation, 66 Acupoints under a human’s elbow and knee, acupuncture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961058 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand
Authors: S. Chuenchooklin
Abstract:
This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.
Keywords: HEC-RAS, HMS, pumping stations, cascade weirs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22851057 Knowledge Transformation Flow (KTF) of Visually Impaired Students: The Virtual Knowledge System as a New Service Innovation
Authors: Chatcai Tangsri, Onjaree Na-Takuatoong
Abstract:
This paper aims to present the key factors that support the decision to use the technology and to present the knowledge transformation flow of visually impaired students after the use of virtual knowledge system as proposed as a new service innovation to universities in Thailand. Correspondents of 27 visually impaired students are involved in this research. Total of 25 students are selected from university that mainly conducts non-classroom teaching environment; while another 2 visually impaired students are selected from classroom teaching environment. All of them are fully involved in the study along 8 weeks duration. All correspondents are classified into 5 small groups in various conditions. The research results revealed that the involvement from knowledge facilitator can push out for the behavioral actual use of the virtual knowledge system although there is no any developed intention to use behaviors. Secondly, the situations that the visually impaired students inadequate of the knowledge sources that usually provided by assistants i.e. peers, audio files etc. In this case, they will use the virtual knowledge system for both knowledge access and knowledge transfer request. With this evidence, the need of knowledge would play a stronger role than all technology acceptance factors. Finally, this paper revealed that the knowledge transfer in normal method that students have a chance to physically meet up is still confirmed as their preference method. In term of other aspects of technology acceptance, it will be discussed together with challenges and recommendations at the end of this paper.
Keywords: Knowledge system, Visually impaired students, Higher education, Knowledge management enable technology, Synchronous/Asynchronous knowledge access, Synchronous/Asynchronous knowledge transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491056 Modeling of Fluid Flow in 2D Triangular, Sinusoidal, and Square Corrugated Channels
Authors: Abdulbasit G. A. Abdulsayid
Abstract:
The main focus of the work was concerned with hydrodynamic and thermal analysis of the plate heat exchanger channel with corrugation patterns suggested to be triangular, sinusoidal, and square corrugation. This study was to numerically model and validate the triangular corrugated channel with dimensions/parameters taken from open literature, and then model/analyze both sinusoidal, and square corrugated channel referred to the triangular model. Initially, 2D modeling with local extensive analysis for triangular corrugated channel was carried out. By that, all local pressure drop, wall shear stress, friction factor, static temperature, heat flux, Nusselt number, and surface heat coefficient, were analyzed to interpret the hydrodynamic and thermal phenomena occurred in the flow. Furthermore, in order to facilitate confidence in this model, a comparison between the values predicted, and experimental results taken from literature for almost the same case, was done. Moreover, a holistic numerical study for sinusoidal and square channels together with global comparisons with triangular corrugation under the same condition, were handled. Later, a comparison between electric, and fluid cooling through varying the boundary condition was achieved. The constant wall temperature and constant wall heat flux boundary conditions were employed, and the different resulted Nusselt numbers as a consequence were justified. The results obtained can be used to come up with an optimal design, a 'compromise' between heat transfer and pressure drop.
Keywords: Corrugated Channel, CFD, Heat Exchanger, Heat Enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31761055 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System
Authors: J. B. Qin, X. H. Jiang, Y. T. Ge
Abstract:
The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged. To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.
Keywords: Dissolved gases in water, heat pump, domestic water heating system, microbubble formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8411054 Improvement of Gas Turbine Performance Test in Combine Cycle
Authors: M. Khosravy-el-Hossani, Q. Dorosti
Abstract:
One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.Keywords: Gas turbine, Performance test code, Combined cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29881053 Conjunctive Surface Runoff and Groundwater Management in Salinity Soils
Authors: S. Chuenchooklin, T. Ichikawa, P. Mekpruksawong
Abstract:
This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.Keywords: Surface water, groundwater observation, irrigation, water balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341052 Fatigue Life Consumption for Turbine Blades-Vanes Accelerated by Erosion-Contour Modification
Authors: Julio C. Gómez-Mancilla, Luis M. Palacios-Pineda, Yunuén López-Grijalba
Abstract:
A new mechanism responsible for structural life consumption due to resonant fatigue in turbine blades, or vanes, is presented and explained. A rotating blade or vane in a gas turbine can change its contour due to erosion and/or material build up, in any of these instances, the surface pressure distribution occurring on the suction and pressure sides of blades-vanes can suffer substantial modification of their pressure and temperatures envelopes and flow characteristics. Meanwhile, the relative rotation between the blade and duct vane while the pressurized gas flows and the consequent wake crossings, will induce a fluctuating thrust force or lift that will excite the blade. An actual totally used up set of vane-blade components in a HP turbine power stage in a gas turbine is analyzed. The blade suffered some material erosion mostly at the trailing edge provoking a peculiar surface pressure envelope which evolved as the relative position between the vane and the blade passed in front of each other. Interestingly preliminary modal analysis for this eroded blade indicates several natural frequencies within the aeromechanic power spectrum, moreover, the highest frequency component is 94% of one natural frequency indicating near resonant condition. Independently of other simultaneously occurring fatigue cycles (such as thermal, centrifugal stresses).Keywords: Aeromechanic induced vibration, potential flowinteraction, turbine unsteady flow, rotor/stator interaction, turbinevane-blade aerodynamic interaction, airfoil clocking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25381051 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9541050 Managing Iterations in Product Design and Development
Authors: K. Aravindhan, Trishit Bandyopadhyay, Mahesh Mehendale, Supriya Kumar De
Abstract:
The inherent iterative nature of product design and development poses significant challenge to reduce the product design and development time (PD). In order to shorten the time to market, organizations have adopted concurrent development where multiple specialized tasks and design activities are carried out in parallel. Iterative nature of work coupled with the overlap of activities can result in unpredictable time to completion and significant rework. Many of the products have missed the time to market window due to unanticipated or rather unplanned iteration and rework. The iterative and often overlapped processes introduce greater amounts of ambiguity in design and development, where the traditional methods and tools of project management provide less value. In this context, identifying critical metrics to understand the iteration probability is an open research area where significant contribution can be made given that iteration has been the key driver of cost and schedule risk in PD projects. Two important questions that the proposed study attempts to address are: Can we predict and identify the number of iterations in a product development flow? Can we provide managerial insights for a better control over iteration? The proposal introduces the concept of decision points and using this concept intends to develop metrics that can provide managerial insights into iteration predictability. By characterizing the product development flow as a network of decision points, the proposed research intends to delve further into iteration probability and attempts to provide more clarity.
Keywords: Decision Points, Iteration, Product Design, Rework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921049 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe
Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara
Abstract:
Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.
Keywords: Drag reduction, shear viscosity, gum Arabic, injection point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7431048 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot
Authors: Jungho Choi, Youngwan Cho
Abstract:
This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22921047 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: Computational fluid dynamics, erosion, slurry transportation, k-ε Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181046 Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries
Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar
Abstract:
In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.Keywords: Pre-Ignition chamber dynamics, starting transient, solid rockets, thrust oscillations in SRMs, ignition transient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651045 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: Environmental industry, Separator, CFD, Fine aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807