Search results for: Flow discharge determination
1851 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux
Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181850 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production
Authors: Lubomir Machuca, Vit Fara
Abstract:
Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.
Keywords: Desalination, electrodialysis, electrodeionization, fertilizer industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31551849 Elegant: An Intuitive Software Tool for Interactive Learning of Power System Analysis
Authors: Eduardo N. Velloso, Fernando M. N. Dantas, Luciano S. Barros
Abstract:
A common complaint from power system analysis students lies in the overly complex tools they need to learn and use just to simulate very basic systems or just to check the answers to power system calculations. The most basic power system studies are power-flow solutions and short-circuit calculations. This paper presents a simple tool with an intuitive interface to perform both these studies and assess its performance in comparison with existent commercial solutions. With this in mind, Elegant is a pure Python software tool for learning power system analysis developed for undergraduate and graduate students. It solves the power-flow problem by iterative numerical methods and calculates bolted short-circuit fault currents by modeling the network in the domain of symmetrical components. Elegant can be used with a user-friendly Graphical User Interface (GUI) and automatically generates human-readable reports of the simulation results. The tool is exemplified using a typical Brazilian regional system with 18 buses. This study performs a comparative experiment with 1 undergraduate and 4 graduate students who attempted the same problem using both Elegant and a commercial tool. It was found that Elegant significantly reduces the time and labor involved in basic power system simulations while still providing some insights into real power system designs.
Keywords: Free- and open-source software, power-flow, power system analysis, Python, short-circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551848 The Effect of Different Nozzle Configurations on Airflow Behaviour and Yarn Quality
Abstract:
Nozzle is the main part of various spinning systems such as air-jet and Murata air vortex systems. Recently, many researchers worked on the usage of the nozzle on different spinning systems such as conventional ring and compact spinning systems. In these applications, primary purpose is to improve the yarn quality. In present study, it was produced the yarns with two different nozzle types and determined the changes in yarn properties. In order to explain the effect of the nozzle, airflow structure in the nozzle was modelled and airflow variables were determined. In numerical simulation, ANSYS 12.1 package program and Fluid Flow (CFX) analysis method was used. As distinct from the literature, Shear Stress Turbulent (SST) model is preferred. And also air pressure at the nozzle inlet was measured by electronic mass flow meter and these values were used for the simulation of the airflow. At last, the yarn was modelled and the area from where the yarn is passing was included to the numerical analysis.Keywords: Nozzle, compressed air, swirling airflow, yarn properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24551847 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows
Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle
Abstract:
This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.
Keywords: Airborne, airflow, focused sound field, ultrasonic phased array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261846 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure
Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He
Abstract:
This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.
Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38371845 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.
Keywords: Alumina-coated magnetite nanoparticles, magnetic mixed hemimicell solid-phase extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12091844 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm
Authors: Muhammad Amjad Sohail, Rizwan Ullah
Abstract:
This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23931843 Effects of Polymers and Alkaline on Recovery Improvement from Fractured Models
Authors: Payam Parvasi, Mohammad Hossein Sedaghat, Reza Janamiri, Amir Hatampour
Abstract:
In this work, several ASP solutions were flooded into fractured models initially saturated with heavy oil at a constant flow rate and different geometrical characteristics of fracture. The ASP solutions are constituted from 2 polymers i.e. a synthetic polymer, hydrolyzed polyacrylamide as well as a biopolymer, a surfactant and 2types of alkaline. The results showed that using synthetic hydrolyzed polyacrylamide polymer increases ultimate oil recovery; however, type of alkaline does not play a significant rule on oil recovery. In addition, position of the injection well respect to the fracture system has remarkable effects on ASP flooding. For instance increasing angle of fractures with mean flow direction causes more oil recovery and delays breakthrough time. This work can be accounted as a comprehensive survey on ASP flooding which considers most of effective factors in this chemical EOR method.Keywords: ASP Flooding, Fractured System, Displacement, Heavy Oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331842 Verification of a Locked CFD Approach to Cool Down Modeling
Authors: P. Bárta
Abstract:
Increasing demand on the performance of Subsea Production Systems (SPS) suggests a need for more detailed investigation of fluid behavior taking place in subsea equipment. Complete CFD cool down analyses of subsea equipment are very time demanding. The objective of this paper is to investigate a Locked CFD approach, which enables significant reduction of the computational time and at the same time maintains sufficient accuracy during thermal cool down simulations. The result comparison of a dead leg simulation using the Full CFD and the three LCFD-methods confirms the validity of the locked flow field assumption for the selected case. For the tested case the LCFD simulation speed up by factor of 200 results in the absolute thermal error of 0.5 °C (3% relative error), speed up by factor of 10 keeps the LCFD results within 0.1 °C (0.5 % relative error) comparing to the Full CFD.Keywords: CFD, Locked Flow Field, Speed up of CFD simulation time, Subsea
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16741841 Parallel Computation in Hypersonic Aerodynamic Heating Problem
Authors: Ding Guo-hao, Li Hua, Wang Wen-long
Abstract:
A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body.Keywords: Aerodynamic Heating, AUSMPW+, MPI, ParallelComputation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651840 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.
Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28211839 Landslide and Debris Flow Characteristics during Extreme Rainfall in Taiwan
Authors: C. Y. Chen
Abstract:
As the global climate changes, the threat from landslides and debris flows increases. Learning how a watershed initiates landslides under abnormal rainfall conditions and predicting landslide magnitude and frequency distribution is thus important. Landslides show a power-law distribution in the frequency-area distribution. The distribution curve shows an exponent gradient 1.0 in the Sandpile model test. Will the landslide frequency-area statistics show a distribution similar to the Sandpile model under extreme rainfall conditions? The purpose of the study is to identify the extreme rainfall-induced landslide frequency-area distribution in the Laonong River Basin in southern Taiwan. Results of the analysis show that a lower gradient of landslide frequency-area distribution could be attributed to the transportation and deposition of debris flow areas that are included in the landslide area.Keywords: Landslide, power-law distribution, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431838 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network
Authors: A.V.Naresh Babu, S.Sivanagaraju
Abstract:
A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21961837 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal
Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha
Abstract:
Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.
Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9861836 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect
Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi
Abstract:
High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.
Keywords: Integration, electrokinetic, on-chip, fluid pumping, microfluidic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8441835 Direct Numerical Simulation of Subcooled Nucleate Pool Boiling
Authors: Sreeyuth Lal, Yohei Sato, Bojan Niceno
Abstract:
With the long-term objective of Critical Heat Flux (CHF) prediction, a Direct Numerical Simulation (DNS) framework for simulation of subcooled and saturated nucleate pool boiling is developed. One case of saturated, and three cases of subcooled boiling at different subcooling levels are simulated. Grid refinement study is also reported. Both boiling and condensation phenomena can be computed simultaneously in the proposed numerical framework. Computed bubble detachment diameters of the saturated nucleate pool boiling cases agree well with the experiment. The flow structures around the growing bubble are presented and the accompanying physics is described. The relation between heat flux evolution from the heated wall and the bubble growth is studied, along with investigations of temperature distribution and flow field evolutions.
Keywords: CFD, interface tracking method, phase change model, subcooled nucleate pool boiling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24641834 Electrical Characteristics of SCR - based ESD Device for I/O and Power Rail Clamp in 0.35um Process
Authors: Yong Seo Koo, Dong Su Kim, Byung Seok Lee, Won Suk Park, Bo Bea Song
Abstract:
This paper presents a SCR-based ESD protection devices for I/O clamp and power rail clamp, respectably. These devices have a low trigger voltage and high holding voltage characteristics than conventional SCR device. These devices are fabricated by using 0.35um BCD (Bipolar-CMOS-DMOS) processes. These devices were validated using a TLP system. From the experimental results, the device for I/O ESD clamp has a trigger voltage of 5.8V. Also, the device for power rail ESD clamp has a holding voltage of 7.7V.
Keywords: ESD (Electro-Static Discharge), ESD protection device, SCR (Silicon Controlled Rectifier), Latch-up
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27741833 Experimental and CFD Investigation of Nozzle Angle in Jet Mixer
Authors: Hamid Rafiei, Reza Janamiri, Mohammad Hossein Sedaghat, Amir Hatampour
Abstract:
In this work, the results of mixing study by a jet mixer in a tank have been investigated in the laboratory scale. The tank dimensions are H/D=1 and the jet entrance have been considered in the center of upper surface of tank. RNG-k-ε model is used as the turbulent model for the prediction of the pattern of turbulent flow inside the tank. For this purpose, a tank with volume of 110 liter is simulated and it has been divided into 410,000 tetrahedral control cells for performing the calculations. The grids at the vicinity of the nozzle and suction pare are finer to get more accurate results. The experimental results showed that in a vertical jet, the lowest mixing time takes place at 35 degree. In addition, mixing time decreased by increasing the Reynolds number. Furthermore, the CFD simulation predicted the items as well a flow patterns precisely that validates the experiments.
Keywords: Jet mixer, CFD, Turbulent model, Nozzle angle, Mixing time, Reynolds Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25791832 A Lifetime-Guaranteed Routing Scheme in Wireless Sensor Networks
Authors: Jae Keun Park, Sung Je Hong, Kyong Hoon Kim, Tae Heum Kang, Wan Yeon Lee
Abstract:
In this paper, we propose a routing scheme that guarantees the residual lifetime of wireless sensor networks where each sensor node operates with a limited budget of battery energy. The scheme maximizes the communications QoS while sustaining the residual battery lifetime of the network for a specified duration. Communication paths of wireless nodes are translated into a directed acyclic graph(DAG) and the maximum-flow algorithm is applied to the graph. The found maximum flow are assigned to sender nodes, so as to maximize their communication QoS. Based on assigned flows, the scheme determines the routing path and the transmission rate of data packet so that any sensor node on the path would not exhaust its battery energy before a specified duration.Keywords: Sensor network, battery, residual lifetime, routingscheme, QoS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16321831 Innovative Activity of Virtual Firm
Authors: Veronika Gruberová
Abstract:
The strengthening of competitive advantage combined with the transformation of business strategy is necessary for the company to succeed in the time of market changes. And in this sense the innovation activities of the firm are exactly significanting. Virtual firms are a specific form of enterprise in which we can't suppose all regularities obtaining in other forms. The aim of the paper is to evaluate factors influencing the innovation activity of virtual firm with the determination of their importance and influences on the basis of selected metrics.
Keywords: Innovation, virtual firm, factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961830 Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium
Authors: T. K. Das, N. Senapatil, R. K. Dhal
Abstract:
An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.
Keywords: MHD, Mixed convective, Elastic-viscous incompressible, rotational, heat transfer, mass transfer, suction and injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781829 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion
Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi
Abstract:
The effect of a 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in this study, in order to improve the peak efficiency and stall characteristics. The aim of use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from the mean radius to tip. The proposed blade profiles in the study are NACA0015 from the hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e., the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.
Keywords: Fluid machinery, ocean engineering, stall, wave energy conversion, Wells turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36091828 Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel
Authors: Huei Chu Weng, Chien-Hung Liu
Abstract:
This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases.Keywords: Microfluidics, forced convection, gas rarefaction, second-order boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791827 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer
Authors: JeongJu Kim, Heeyoon Chung, DongHo Rhee, HyungHee Cho
Abstract:
There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.
Keywords: Gas turbine, film cooling effectiveness, endwall, fillet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461826 A Model to Determine Atmospheric Stability and its Correlation with CO Concentration
Authors: Kh. Ashrafi, Gh. A. Hoshyaripour
Abstract:
Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.Keywords: Atmospheric stability, Pasquill-Turner classification, convective turbulence, mechanical turbulence, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64531825 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma
Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado
Abstract:
The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this directon, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.
Keywords: BTEX, Degradation, Cold plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27331824 A Further Improvement on the Resurrected Core-Spreading Vortex Method
Authors: M-J. Huang, C-J. Huang, L-C. Chen
Abstract:
In a previously developed fast vortex method, the diffusion of the vortex sheet induced at the solid wall by the no-slip boundary conditions was modeled according to the approximation solution of Koumoutsakos and converted into discrete blobs in the vicinity of the wall. This scheme had been successfully applied to a simulation of the flow induced with an impulsively initiated circular cylinder. In this work, further modifications on this vortex method are attempted, including replacing the approximation solution by the boundary-element-method solution, incorporating a new algorithm for handling the over-weak vortex blobs, and diffusing the vortex sheet circulation in a new way suitable for high-curvature solid bodies. The accuracy is thus largely improved. The predictions of lift and drag coefficients for a uniform flow past a NASA airfoil agree well with the existing literature.Keywords: Resurrected core-spreading vortex method, Boundaryelement method, Vortex sheet, Over-weak vortex blobs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171823 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.
Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7831822 Analysis of SCR-Based ESD Protection Circuit on Holding Voltage Characteristics
Authors: Yong Seo Koo, Jong Ho Nam, Yong Nam Choi, Dae Yeol Yoo, Jung Woo Han
Abstract:
This paper presents a silicon controller rectifier (SCR) based ESD protection circuit for IC. The proposed ESD protection circuit has low trigger voltage and high holding voltage compared with conventional SCR ESD protection circuit. Electrical characteristics of the proposed ESD protection circuit are simulated and analyzed using TCAD simulator. The proposed ESD protection circuit verified effective low voltage ESD characteristics with low trigger voltage and high holding voltage.
Keywords: ESD (Electro-Static Discharge), SCR (Silicon Controlled Rectifier), holding Voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734