Search results for: topography. Subject classification: 86 A 05
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1769

Search results for: topography. Subject classification: 86 A 05

599 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
598 Influence of the Entropic Parameter on the Flow Geometry and Morphology

Authors: D. Mirauda, M. Greco, A. Volpe Plantamura

Abstract:

The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.

Keywords: Froude number, entropic parameter, roughness, water discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
597 A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients

Authors: Chien-Chih Chen, Ya-Hsin Hsueh, Zong-Cian He

Abstract:

With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.

Keywords: Functional Electrical Stimulation cycling system EMG, control protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
596 Clustering Unstructured Text Documents Using Fading Function

Authors: Pallav Roxy, Durga Toshniwal

Abstract:

Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.

Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
595 Glass Bottle Inspector Based on Machine Vision

Authors: Huanjun Liu, Yaonan Wang, Feng Duan

Abstract:

This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.

Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3896
594 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
593 Organisational Blogging: Reviewing Its Effectiveness as an Organisational Learning Tool

Authors: Gavin J. Baxter, Mark H. Stansfield

Abstract:

This paper reviews the internal use of blogs and their potential effectiveness as organisational learning tools. Since the emergence of the concept of ‘Enterprise 2.0’ there remains a lack of empirical evidence associated with how organisations are applying social media tools and whether they are effective towards supporting organisational learning. Surprisingly, blogs, one of the more traditional social media tools, still remains under-researched in the context of ‘Enterprise 2.0’ and organisational learning. The aim of this paper is to identify the theoretical linkage between blogs and organisational learning in addition to reviewing prior research on organisational blogging exploring why this area remains underresearched. Through a literature review, one of the principal findings of this paper is that organisational blogs have a mutual compatibility with the interpretivist aspect of organisational learning. This paper further advocates that further empirical work in this subject area is required to substantiate this theoretical assumption.

Keywords: Blogs, Enterprise 2.0, Organisational Learning, Social Media Tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
592 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment

Authors: M. Salman, B. Budiardjo, K. Ramli

Abstract:

Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.

Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939
591 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
590 Scientometrics Analysis of Food Supply Chain Risk Assessment Literature Based on Web of Science Record 1996-2014

Authors: Mohsen Shirani, Shadi Asadzandi, Micaela Demichela

Abstract:

This paper presents the results of a study to assess crucial aspects and the strength of the scientific basis of a typically interdisciplinary, applied field: food supply chain risk assessment research. Our approach is based on an advanced scientometrics analysis that is a quantitative study of the disciplines of science based on published literature to measure interdisciplinary. This paper aims to describe the quantity and quality of the publication trends in food supply chain risk assessment. The publication under study was composed of 266 articles from database web of science. The results were analyzed based on date of publication, type of document, language of the documents, source of publications, subject areas, authors and their affiliations, and the countries involved in developing the articles.

Keywords: Food Supply Chain, Risk Assessment, Scientometrics, Web of science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
589 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM

Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis

Abstract:

It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
588 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
587 Analysis of Suitability of Online Assessment by Maintaining Critical Thinking

Authors: Mohamed Chabi, Mohammad Shahid Jamil, Mahmoud I Syam

Abstract:

The purpose of this study is to determine whether paper assessment especially in the subject mathematics will ever be completely replaced by online assessment using Learning Management System and Content Management System such as blackboard. Testing students has moved from the traditional scribbling and sketching on paper towards working online on a screen and keyboard. It is found that online assessment by using selective types of questions like multiple choices, true or false and final answer questions don’t reflect the actual understanding of students in solving the problems and teachers can’t determine the weakness points of students. In addition, it is showed that OBMCQs are a very good tool for self-assessment and when teachers are testing for knowledge and facts. But when it comes to the skills, OBMCQs are poor tools for measuring the ability to apply knowledge to complex math problem. 

Keywords: Paper assessment, online assessment, learning management system, content management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
586 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153
585 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
584 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
583 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer

Authors: Maziyar Nouraee

Abstract:

Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.

Keywords: Electronic Commerce, Electronic Market, B2B Trade, Supply Chain Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
582 The Canonical Object and Other Objects in Arabic

Authors: Safiah A. Madkhali

Abstract:

The grammatical relation object has not attracted the same attention in the literature as subject has. Where there is a clearly monotransitive verb such as kick, the criteria for identifying the grammatical relation may converge. However, the term object is also used to refer to phenomena that do not subsume all, or even most, of the recognized properties of the canonical object. Instances of such phenomena include non-canonical objects such as the ones in the so-called double-object construction i.e., the indirect object and the direct object as in (He bought his dog a new collar). In this paper, it is demonstrated how criteria of identifying the grammatical relation object that are found in the theoretical and typological literature can be applied to Arabic. Also, further language-specific criteria are here derived from the regularities of the canonical object in the language. The criteria established in this way are then applied to the non-canonical objects to demonstrate how far they conform to, or diverge from, the canonical object. Contrary to the claim that the direct object is more similar to the canonical object than is the indirect object, it was found that it is, in fact, the indirect object rather than the direct object that shares most of the aspects of the canonical object in monotransitive clauses.

Keywords: Canonical objects, double-object constructions, direct object, indirect object, non-canonical objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
581 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor

Authors: Wenji Zhu, Yigang He

Abstract:

This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.

Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
580 An Example of Post-Harvest Thermotherapy as a Non-Chemical Method of Pathogen Control on Apples of Topaz Cultivar in Storage

Authors: M. Grabowski, K. Macnar, J. Skrzyński

Abstract:

Huge losses in apple production are caused by pathogens that cannot be seen shortly after harvest. After-harvest thermotherapy treatments can considerably improve control of storage diseases on apples and become an alternative to chemical pesticides. In the years 2010-2012 carried out research in this area. Apples of 'Topaz' cultivar were harvested at optimal maturity time for long storage and subject to water bath treatment at 45, 50, 52, 55°C for 60, 120, 180 and 240 seconds. The control was untreated fruits. After 12 and 24 weeks and during so called simulated trade turnover the fruits were checked for their condition and the originators of diseases were determined by using the standard phytopathological methods. The most common originator of 'Topaz' apple infection during storage were the fungi of genus Gloeosporium. In this paper it was proven that for effective protection of 'Topaz' apples against diseases, thermotherapy by using water treatments at temperature range of 50-52°C is quite sufficient.

Keywords: apple storage diseases, prolonged fruit storage, 'Topaz' apples, thermotherapeutic treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
579 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

This article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article will be discussed: the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application and it is the main thesis of author’s doctoral dissertation.

Keywords: Electrical vehicle, generator, permanent magnet, traction drive, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
578 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: Feature fusion, image retrieval, membership function, normalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
577 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution

Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell

Abstract:

This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.

Keywords: Detection, leakage, neural networks, sensors, water distribution networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
576 A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework

Authors: Hamideh Mahdavifar, Ramin Nassiri, Alireza Bagheri

Abstract:

Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.

Keywords: Business Reference Model (BRM), Federal Enterprise Architecture (FEA), ISTQB, Test Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
575 Comparative Analysis of Machine Learning Tools: A Review

Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha

Abstract:

Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.

Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
574 Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification

Authors: S. Hma Salah, H. Du, N. Al-Jawad

Abstract:

Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.

Keywords: Ethnicity identification, fusion, local binary patterns, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
573 Classification of Precipitation Types Detected in Malaysia

Authors: K. Badron, A. F. Ismail, A. L. Asnawi, N. F. A. Malik, S. Z. Abidin, S. Dzulkifly

Abstract:

The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009.

Keywords: Stratiform, convective, tropical region, attenuation radar reflectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
572 Techno-Economics Study to Select Optimum Desalination Plant for Asalouyeh Combined Cycle Power Plant in Iran

Authors: Z. Gomar, H. Heidary, M. Davoudi

Abstract:

This research deals with techno economic analysis to select the most economic desalination method for Asalouyeh combined cycle power plant . Due to lack of fresh water, desalination of sea water is necessary to provide required DM water of Power Plant. The most common desalination methods are RO, MSF, MED, and MED–TVC. In this research, methods of RO, MED, and MED– TVC have been compared. Simulation results show that recovery of heat of exhaust gas of main stack is optimum case for providing DM water required for injected steam of MED desalination. This subject is very important because of improving thermal efficiency of power plant using extra heat recovery. Also, it has been shown that by adding 3 rows of finned tube to de-aerator evaporator, which is very simple and low cost, required steam for generating 5200 m3/day of desalinated water is obtainable.

Keywords: Desalination, MED, thermodynamic simulation, combined cycle power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136
571 Experimental Analysis and Numerical Simulation of Smart Sandwich Beams Behavior in Honeycomb Magnetorheological Elastomer

Authors: A. Khebli, S. Aguib, Y. Kateb, L. Guenfoud, N. Chikh, M. Tourab, T. Djedid, W. Dilmi, A. Hadidi, H. Meglouli

Abstract:

Composite structures based on magnetorheological elastomers (MREs) are widely used in many industrial sectors, such as automotive, naval, railway, aeronautical, aerospace, and building industries because of their adjustable mechanical properties by an external stimulus. In this work, experimental tests and numerical simulations carried out have shown that the use of these new structures, developed from honeycomb core, and MRE with aluminum skins, make it possible to improve particularly the overall rigidity and to reduce the vibration amplitudes. The results found showed that these hybrid structures have a very good mechanical resistance due mainly to the honeycomb core, and a very good shock absorber due mainly to the core of the MRE. The elaborated composite structure is intended to be used in industrial sectors subject to great efforts and a high amplitude of vibration such as helicopter wings and air turbines.

Keywords: Hybrid sandwich structures, magnetorheological elastomer, honeycomb, 3-point bending, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183
570 Developing Examination Management System: Senior Capstone Project, a Case Study

Authors: S. Vasupongayya, W. Noodam, P. Kongyong

Abstract:

This paper presents the result of three senior capstone projects at the Department of Computer Engineering, Prince of Songkla University, Thailand. These projects focus on developing an examination management system for the Faculty of Engineering in order to manage the examination both the examination room assignments and the examination proctor assignments in each room. The current version of the software is a web-based application. The developed software allows the examination proctors to select their scheduled time online while each subject is assigned to each available examination room according to its type and the room capacity. The developed system is evaluated using real data by prospective users of the system. Several suggestions for further improvements are given by the testers. Even though the features of the developed software are not superior, the developing process can be a case study for a projectbased teaching style. Furthermore, the process of developing this software can show several issues in developing an educational support application.

Keywords: Scheduling, Web-based, Greedy Algorithm, Engineering Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7083