Search results for: Flow discharge determination
1881 Air Flows along Perforated Metal Plates with the Heat Transfer
Abstract:
The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.Keywords: Perforations, convective heat transfers, turbulent flows, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22471880 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14671879 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration
Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe
Abstract:
The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.
Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871878 Judicial Review of Indonesia's Position as the First Archipelagic State to implement the Traffic Separation Scheme to Establish Maritime Safety and Security
Authors: Rosmini Yanti, Safira Aviolita, Marsetio
Abstract:
Indonesia has several straits that are very important as a shipping lane, including the Sunda Strait and the Lombok Strait, which are the part of the Indonesian Archipelagic Sea Lane (IASL). An increase in traffic on the Marine Archipelago makes the task of monitoring sea routes increasingly difficult. Indonesia has proposed the establishment of a Traffic Separation Scheme (TSS) in the Sunda Strait and the Lombok Strait and the country now has the right to be able to conceptualize the TSS as well as the obligation to regulate it. Indonesia has the right to maintain national safety and sovereignty. In setting the TSS, Indonesia needs to issue national regulations that are in accordance with international law and the general provisions of the IMO (International Maritime Organization) can then be used as guidelines for maritime safety and security in the Sunda Strait and the Lombok Strait. The research method used is a qualitative method with the concept of linguistic and visual data collection. The source of the data is the analysis of documents and regulations. The results show that the determination of TSS was justified by International Law, in accordance with article 22, article 41, and article 53 of the United Nations Convention on the Law of the Sea (UNCLOS) 1982. The determination of TSS by the Indonesian government would be in accordance with COLREG (International Convention on Preventing Collisions at Sea) 10, which has been designed to follow IASL. Thus, TSS can provide a function as a safety and monitoring medium to minimize ship accidents or collisions, including the warship and aircraft of other countries that cross the IASL.
Keywords: Archipelago State, maritime law, maritime security, traffic separation scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421877 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems
Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas
Abstract:
This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.Keywords: Transportation networks, freight delivery, data flow, monitoring, e-services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6071876 Influence of IMV on Space Station
Authors: Fu Shiming, Pei Yifei
Abstract:
To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.
Keywords: CFD, Environment control and life support, Space station, Thermal management, Thermal mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20601875 An Optimized Multi-block Method for Turbulent Flows
Authors: M. Goodarzi, P. Lashgari
Abstract:
A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651874 A Frequency Dependence of the Phase Field Model in Laminar Boundary Layer with Periodic Perturbations
Authors: Yasuo Obikane
Abstract:
The frequency dependence of the phase field model(PFM) is studied. A simple PFM is proposed, and is tested in a laminar boundary layer. The Blasius-s laminar boundary layer solution on a flat plate is used for the flow pattern, and several frequencies are imposed on the PFM, and the decay times of the interfaces are obtained. The computations were conducted for three cases: 1) no-flow, and 2) a half ball on the laminar boundary layer, 3) a line of mass sources in the laminar boundary layer. The computations show the decay time becomes shorter as the frequency goes larger, and also show that it is sensitive to both background disturbances and surface tension parameters. It is concluded that the proposed simple PFM can describe the properties of decay process, and could give the fundamentals for the decay of the interface in turbulent flows.Keywords: Phase field model, two phase flows, Laminarboundary Layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091873 The Determination of Stress Experienced by Nursing Undergraduate Students during Their Education
Authors: Gülden Küçükakça, Şefika Dilek Güven, Rahşan Kolutek, Seçil Taylan
Abstract:
Objective: Nursing students face with stress factors affecting academic performance and quality of life as from first moments of their educational life. Stress causes health problems in students such as physical, psycho-social, and behavioral disorders and might damage formation of professional identity by decreasing efficiency of education. In addition to determination of stress experienced by nursing students during their education, it was aimed to help review theoretical and clinical education settings for bringing stress of nursing students into positive level and to raise awareness of educators concerning their own professional behaviors. Methods: The study was conducted with 315 students studying at nursing department of Semra and Vefa Küçük Health High School, Nevşehir Hacı Bektaş Veli University in the academic year of 2015-2016 and agreed to participate in the study. “Personal Information Form” prepared by the researchers upon the literature review and “Nursing Education Stress Scale (NESS)” were used in this study. Data were assessed with analysis of variance and correlation analysis. Results: Mean NESS Scale score of the nursing students was estimated to be 66.46±16.08 points. Conclusions: As a result of this study, stress level experienced by nursing undergraduate students during their education was determined to be high. In accordance with this result, it can be recommended to determine sources of stress experienced by nursing undergraduate students during their education and to develop approaches to eliminate these stress sources.Keywords: Stress, nursing education, nursing student, nursing education stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20891872 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties
Authors: M. A. Nozari, R. Ziaie Moayed
Abstract:
Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.
Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391871 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
Authors: Chul Ho Han, Kyoung Hoon Kim
Abstract:
This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.
Keywords: Entropy, exergy, ammonia-water mixture, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801870 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability
Authors: Hosein Faramarzpour
Abstract:
This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter, the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.
Keywords: Thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541869 Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model
Authors: Hadi Seyedarabi, Ali Aghagolzadeh, Sohrab Khanmohammadi
Abstract:
Face and facial expressions play essential roles in interpersonal communication. Most of the current works on the facial expression recognition attempt to recognize a small set of the prototypic expressions such as happy, surprise, anger, sad, disgust and fear. However the most of the human emotions are communicated by changes in one or two of discrete features. In this paper, we develop a facial expressions synthesis system, based on the facial characteristic points (FCP's) tracking in the frontal image sequences. Selected FCP's are automatically tracked using a crosscorrelation based optical flow. The proposed synthesis system uses a simple deformable facial features model with a few set of control points that can be tracked in original facial image sequences.Keywords: Deformable face model, facial animation, facialcharacteristic points, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331868 Landfill Failure Mobility Analysis: A Probabilistic Approach
Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed
Abstract:
Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.Keywords: Landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22861867 Stability Optimization of Functionally Graded Pipes Conveying Fluid
Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed
Abstract:
This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081866 Influence of Thermo-fluid-dynamic Parameters on Fluidics in an Expanding Thermal Plasma Deposition Chamber
Authors: G. Zuppardi, F. Romano
Abstract:
Technology of thin film deposition is of interest in many engineering fields, from electronic manufacturing to corrosion protective coating. A typical deposition process, like that developed at the University of Eindhoven, considers the deposition of a thin, amorphous film of C:H or of Si:H on the substrate, using the Expanding Thermal arc Plasma technique. In this paper a computing procedure is proposed to simulate the flow field in a deposition chamber similar to that at the University of Eindhoven and a sensitivity analysis is carried out in terms of: precursor mass flow rate, electrical power, supplied to the torch and fluid-dynamic characteristics of the plasma jet, using different nozzles. To this purpose a deposition chamber similar in shape, dimensions and operating parameters to the above mentioned chamber is considered. Furthermore, a method is proposed for a very preliminary evaluation of the film thickness distribution on the substrate. The computing procedure relies on two codes working in tandem; the output from the first code is the input to the second one. The first code simulates the flow field in the torch, where Argon is ionized according to the Saha-s equation, and in the nozzle. The second code simulates the flow field in the chamber. Due to high rarefaction level, this is a (commercial) Direct Simulation Monte Carlo code. Gas is a mixture of 21 chemical species and 24 chemical reactions from Argon plasma and Acetylene are implemented in both codes. The effects of the above mentioned operating parameters are evaluated and discussed by 2-D maps and profiles of some important thermo-fluid-dynamic parameters, as per Mach number, velocity and temperature. Intensity, position and extension of the shock wave are evaluated and the influence of the above mentioned test conditions on the film thickness and uniformity of distribution are also evaluated.Keywords: Deposition chamber, Direct Simulation Mote Carlo method (DSMC), Plasma chemistry, Rarefied gas dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971865 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9771864 Experimental and Numerical Simulation of Fire in a Scaled Underground Station
Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler
Abstract:
The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26431863 Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications
Authors: Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adisorn Tuantranont, Erik L J Bohez
Abstract:
In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.Keywords: Coupled multifield, finite element analysis, hollow silicon microneedle, transdermal drug delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541862 A Secure Auditing Framework for Load Balancing in Cloud Environment
Authors: R. Geetha, T. Padmavathy
Abstract:
Security audit is an important aspect or feature to be considered in cloud service customer. It is basically a certification process to audit the controls that deliver the security requirements. Security audits are conducted by trained and qualified staffs that belong to an independent auditing organization. Security audits must be carried as a standard of security controls. Proper check to be made that the cloud user has a proper reporting and logging facilities with the customer's system and hence ensuring appropriate business and operational flow of data through cloud service. We propose a cloud-based secure auditing framework, which enables confided in power to safely store their mystery information on the semi-believed cloud specialist co-ops, and specifically share their mystery information with a wide scope of information recipient, to diminish the key administration intricacy for power proprietors and information collectors. Unique in relation to past cloud-based information framework, data proprietors transfer their mystery information into cloud utilizing static and dynamic evaluating plan. Another propelled determination is, if any information beneficiary needs individual record to download, the information collector will send the solicitation to the expert. The specialist proprietor has the Access Control. At the off probability, the businessman must impart the primary record to the knowledge collector, acknowledge statistics beneficiary solicitation. Once the acknowledgement for the records is over, the recipient downloads the first record and this record shifting time with date and downloading time with date are monitored by the inspector. In addition to deduplication concept, diminished cloud memory area using dynamic document distribution has been proposed.
Keywords: Cloud computing, cloud storage auditing, data integrity, key exposure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11681861 The Use of KREISIG Computer Simulation Program to Optimize Signalized Roundabout
Authors: Ahmad Munawar
Abstract:
KREISIG is a computer simulation program, firstly developed by Munawar (1994) in Germany to optimize signalized roundabout. The traffic movement is based on the car following theory. Turbine method has been implemented for signal setting. The program has then been further developed in Indonesia to meet the traffic characteristics in Indonesia by adjusting the sensitivity of the drivers. Trial and error method has been implemented to adjust the saturation flow. The saturation flow output has also been compared to the calculation method according to 1997 Indonesian Highway Capacity Manual. It has then been implemented to optimize signalized roundabout at Kleringan roundabout in Malioboro area, Yogyakarta, Indonesia. It is found that this method can optimize the signal setting of this roundabout. Therefore, it is recommended to use this program to optimize signalized roundabout.
Keywords: KREISIG, signalized roundabout, traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001860 Study of Current Sheath Velocities in Tridimensional with Sahand Plasma Focus
Authors: M.A. Mohammadi, H.Alinejad, A.Piri
Abstract:
The current sheath dynamics in plasma focus facilities is the most important factors. In this paper the current sheath velocity at three dimensional with Sahand plasma focus facility is investigated. For this purpose the discharge is produced in argon gas with deposited energy lying in the range of 20-37kJ. The current sheath is monitored using two tridimensional magnetic probes. These probes installed near the surface of the interior electrode (anode) at 125mm from the anode axis (pinch place). The effect of gas pressure on the current sheath velocity also is investigated.Keywords: Plasma focus, Current sheath, magnetic probe
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421859 Radiation Effect on Unsteady MHD Flow over a Stretching Surface
Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26751858 Methodology of the Energy Supply Disturbances Affecting Energy System
Authors: J. Augutis, R. Krikstolaitis, L. Martisauskas
Abstract:
Recently global concerns for the energy security have steadily been on the increase and are expected to become a major issue over the next few decades. Energy security refers to a resilient energy system. This resilient system would be capable of withstanding threats through a combination of active, direct security measures and passive or more indirect measures such as redundancy, duplication of critical equipment, diversity in fuel, other sources of energy, and reliance on less vulnerable infrastructure. Threats and disruptions (disturbances) to one part of the energy system affect another. The paper presents methodology in theoretical background about energy system as an interconnected network and energy supply disturbances impact to the network. The proposed methodology uses a network flow approach to develop mathematical model of the energy system network as the system of nodes and arcs with energy flowing from node to node along paths in the network.Keywords: Energy Security, Energy Supply Disturbances, Modeling of Energy System, Network Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14041857 Self-Compacting White Concrete Mix Design Using the Particle Matrix Model
Authors: Samindi Samarakoon, Ørjan Sletbakk Vie, Remi Kleiven Fjelldal
Abstract:
White concrete facade elements are widely used in construction industry. It is challenging to achieve the desired workability in casting of white concrete elements. Particle Matrix model was used for proportioning the self-compacting white concrete (SCWC) to control segregation and bleeding and to improve workability. The paper presents how to reach the target slump flow while controlling bleeding and segregation in SCWC. The amount of aggregates, binders and mixing water, as well as type and dosage of superplasticizer (SP) to be used are the major factors influencing the properties of SCWC. Slump flow and compressive strength tests were carried out to examine the performance of SCWC, and the results indicate that the particle matrix model could produce successfully SCWC controlling segregation and bleeding.Keywords: Mix design, particle, matrix model, white concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22671856 Simulation and Analysis of Control System for a Solar Desalination System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
Fresh water is one of the resources which is getting depleted day by day. A wise method to address this issue is by the application of renewable energy-sun irradiation and by means of decentralized, cheap, energetically self-sufficient, robust and simple to operate plants, distillates can be obtained from sea, river or even sewage. Solar desalination is a technique used to desalinate water using solar energy. The present work deals with the comprehensive design and simulation of solar tracking system using LabVIEW, temperature and mass flow rate control of the solar desalination plant using LabVIEW and also analysis of single phase inverter circuit with LC filters for solar pumping system in MATLAB. The main objective of this work is to improve the performance of solar desalination system using automatic tracking system, output control using temperature and mass flow rate control system and also to reduce the harmonic distortion in the solar pumping system by means of LC filters. The simulation of single phase inverter was carried out using MATLAB and the output waveforms were analyzed. Simulations were performed for optimum output temperature control, which in turn controls the mass flow rate of water in the thermal collectors. Solar tracking system was accomplished using LABVIEW and was tested successfully. The thermal collectors are tracked in accordance with the sun’s irradiance levels, thereby increasing the efficiency of the thermal collectors.Keywords: Desalination, Electro dialysis, LabVIEW, MATLAB, PWM inverter, Reverse osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23971855 On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect
Authors: Subrata Das, Sisir Kumar Guha
Abstract:
The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.
Keywords: Hydrodynamic lubrication, steady-state, micropolar lubricant, turbulent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27471854 A Novel Slip Correction Factor for Spherical Aerosol Particles
Authors: Abouzar Moshfegh, Mehrzad Shams, Goodarz Ahmadi, Reza Ebrahimi
Abstract:
A 3D simulation study for an incompressible slip flow around a spherical aerosol particle was performed. The full Navier-Stokes equations were solved and the velocity jump at the gas-particle interface was treated numerically by imposition of the slip boundary condition. Analytical solution to the Stokesian slip flow past a spherical particle was used as a benchmark for code verification, and excellent agreement was achieved. The Simulation results showed that in addition to the Knudsen number, the Reynolds number affects the slip correction factor. Thus, the Cunningham-based slip corrections must be augmented by the inclusion of the effect of Reynolds number for application to Lagrangian tracking of fine particles. A new expression for the slip correction factor as a function of both Knudsen number and Reynolds number was developed.Keywords: CFD, Cunningham correction, Slip correction factor, Spherical aerosol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35411853 Creation of a New Software used for Palletizing Process
Authors: Dušan Kravec, Ondrej Staš, Marián Tolnay, Michal Bachratý
Abstract:
This article gives a short preview of the new software created especially for palletizing process in automated production systems. Each chapter of this article is about problem solving in development of modules in Java programming language. First part describes structure of the software, its modules and data flow between them. Second part describes all deployment methods, which are implemented in the software. Next chapter is about twodimensional editor created for manipulation with objects in each layer of the load and gives calculations for collision control. Module of virtual reality used for three-dimensional preview and creation of the load is described in the fifth chapter. The last part of this article describes communication and data flow between control system of the robot, vision system and software.Keywords: Palletizing, deployment methods, palletizing software, virtual reality in palletizing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341852 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.
Keywords: Eye, heat-transfer, keratoplasty laser, surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946