Search results for: strategy classification system.
9832 Dataset Analysis Using Membership-Deviation Graph
Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh
Abstract:
Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.Keywords: feature, classification, machine learning algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14459831 Unsupervised Texture Classification and Segmentation
Authors: V.P.Subramanyam Rallabandi, S.K.Sett
Abstract:
An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15919830 LFC Design of a Deregulated Power System with TCPS Using PSO
Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili
Abstract:
In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.
Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20699829 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34409828 Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)
Authors: A. Shamsi, N. Choupani
Abstract:
Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.Keywords: Semi-active suspension system, Skyhook, Vibration isolation, 4DOF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27259827 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP
Authors: S. Boonpoke, B. Marungsri
Abstract:
This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30849826 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: False negative rate, intrusion detection system, machine learning methods, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10709825 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16069824 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection
Authors: K.M. Faraoun, A. Boukelif
Abstract:
This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].Keywords: Genetic programming, patterns classification, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17119823 ANN-Based Classification of Indirect Immuno Fluorescence Images
Authors: P. Soda, G.Iannello
Abstract:
In this paper we address the issue of classifying the fluorescent intensity of a sample in Indirect Immuno-Fluorescence (IIF). Since IIF is a subjective, semi-quantitative test in its very nature, we discuss a strategy to reliably label the image data set by using the diagnoses performed by different physicians. Then, we discuss image pre-processing, feature extraction and selection. Finally, we propose two ANN-based classifiers that can separate intrinsically dubious samples and whose error tolerance can be flexibly set. Measured performance shows error rates less than 1%, which candidates the method to be used in daily medical practice either to perform pre-selection of cases to be examined, or to act as a second reader.
Keywords: Artificial neural networks, computer aided diagnosis, image classification, indirect immuno-fluorescence, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15699822 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32599821 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty
Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong
Abstract:
This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.
Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16339820 Power Management Strategy for Solar-Wind-Diesel Stand-alone Hybrid Energy System
Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim
Abstract:
This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.
Keywords: Solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47129819 Innovation Strategy in Slovak Businesses
Abstract:
The aim of the paper is based on detailed analysis of literary sources and carried out research to develop a model development and implementation of innovation strategy in the business. The paper brings the main results of the authors conducted research on a sample of 462 respondents that shows the current situation in the Slovak enterprises in the use of innovation strategy. Carried out research and analysis provided the base for a model development and implementation of innovation strategy in the business, which is in the paper in detail, step by step explained with emphasis on the implementation process. Implementing the innovation strategy is described a separate model. Paper contains recommendations for successful implementation of innovation strategy in the business. These recommendations should serve mainly business managers as valuable tool in implementing the innovation strategy.Keywords: innovation, innovation strategy, innovative management, innovative potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17399818 Real-Time Specific Weed Recognition System Using Histogram Analysis
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Analysis of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image Processing, real-time recognition, Weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17739817 Detection, Tracking and Classification of Vehicles and Aircraft based on Magnetic Sensing Technology
Authors: K. Dimitropoulos, N. Grammalidis, I. Gragopoulos, H. Gao, Th. Heuer, M. Weinmann, S. Voit, C. Stockhammer, U. Hartmann, N. Pavlidou
Abstract:
Existing ground movement surveillance technologies at airports are subjected to limitations due to shadowing effects or multiple reflections. Therefore, there is a strong demand for a new sensing technology, which will be cost effective and will provide detection of non-cooperative targets under any weather conditions. This paper aims to present a new intelligent system, developed within the framework of the EC-funded ISMAEL project, which is based on a new magnetic sensing technology and provides detection, tracking and automatic classification of targets moving on the airport surface. The system is currently being installed at two European airports. Initial experimental results under real airport traffic demonstrate the great potential of the proposed system.Keywords: Air traffic management, magnetic sensors, multitracking, A-SMGCS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19339816 An Intelligent Human-Computer Interaction System for Decision Support
Authors: Chee Siong Teh, Chee Peng Lim
Abstract:
This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.
Keywords: Interactive evolutionary computation, multivariate data projection, pattern classification, topographic map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14549815 Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network
Authors: Insung Jung, Gi-Nam Wang
Abstract:
The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.Keywords: Neural network, Back-propagation, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16569814 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).
Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17309813 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15479812 Comparison between Different Classifications of Periodontal Diseases and Their Advantages
Authors: Ilma Robo, Saimir Heta, Merilda Tarja, Sonila Kapaj, Eduart Kapaj, Geriona Lasku
Abstract:
The classification of periodontal diseases has changed significantly in favor of simplifying the protocol of diagnosis and periodontal treatment. This review study aims to highlight the latest publications in the new periodontal disease classification, talking about the most significant differences versus the old classification with the tendency to express the advantages or disadvantages of clinical application. The aim of the study also includes the growing tendency to link the way of classification of periodontal diseases with predetermined protocols of periodontal treatment of the diagnoses included in the classification. The new classification of periodontal diseases is rather comprehensive in its subdivisions, as the disease is viewed in its entirety, with the biological dimensions of the disease, the degree of aggravation and progression of the disease, in relation to risk factors, predisposition to patient susceptibility and impact of periodontal disease to the general health status of the patient.
Keywords: Periodontal diseases, clinical application, periodontal treatment, oral diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5979811 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14979810 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8619809 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy
Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler
Abstract:
An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15139808 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21209807 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives
Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer
Abstract:
As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.Keywords: Adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24139806 An Efficient Classification Method for Inverse Synthetic Aperture Radar Images
Authors: Sang-Hong Park
Abstract:
This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.Keywords: Radar, ISAR, radar target classification, radar imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21949805 A New Approach for Fingerprint Classification based on Minutiae Distribution
Authors: Jayant V Kulkarni, Jayadevan R, Suresh N Mali, Hemant K Abhyankar, Raghunath S Holambe
Abstract:
The paper describes a new approach for fingerprint classification, based on the distribution of local features (minute details or minutiae) of the fingerprints. The main advantage is that fingerprint classification provides an indexing scheme to facilitate efficient matching in a large fingerprint database. A set of rules based on heuristic approach has been proposed. The area around the core point is treated as the area of interest for extracting the minutiae features as there are substantial variations around the core point as compared to the areas away from the core point. The core point in a fingerprint has been located at a point where there is maximum curvature. The experimental results report an overall average accuracy of 86.57 % in fingerprint classification.Keywords: Minutiae distribution, Minutiae, Classification, Orientation, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15679804 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: Political tendency, prediction, sentiment analysis, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8489803 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN
Authors: K.Gayathri, N. Kumarappan
Abstract:
An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.
Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456