Search results for: laminated cylindrical shells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 317

Search results for: laminated cylindrical shells

227 Efficiency of Post-Tensioning Method for Seismic Retrofitting of Pre-Cast Cylindrical Concrete Reservoirs

Authors: M.E.Karbaschi, R.Goudarzizadeh, N.Hedayat

Abstract:

Cylindrical concrete reservoirs are appropriate choice for storing liquids as water, oil and etc. By using of the pre-cast concrete reservoirs instead of the in-situ constructed reservoirs, the speed and precision of the construction would considerably increase. In this construction method, wall and roof panels would make in factory with high quality materials and precise controlling. Then, pre-cast wall and roof panels would carry out to the construction site for assembling. This method has a few faults such as: the existing weeks in connection of wall panels together and wall panels to foundation. Therefore, these have to be resisted under applied loads such as seismic load. One of the innovative methods which was successfully applied for seismic retrofitting of numerous pre-cast cylindrical water reservoirs in New Zealand, using of the high tensile cables around the reservoirs and post-tensioning them. In this paper, analytical modeling of wall and roof panels and post-tensioned cables are carried out with finite element method and the effect of height to diameter ratio, post-tensioning force value, liquid level in reservoir, installing position of tendons on seismic response of reservoirs are investigated.

Keywords: Seismic Retrofit, Pre-Cast, Concrete Reservoir, Post-Tensioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
226 Rigorous Modeling of Fixed-Bed Reactors Containing Finite Hollow Cylindrical Catalyst with Michaelis-Menten Type of Kinetics

Authors: Mohammad Asif

Abstract:

A large number of chemical, bio-chemical and pollution-control processes use heterogeneous fixed-bed reactors. The use of finite hollow cylindrical catalyst pellets can enhance conversion levels in such reactors. The absence of the pellet core can significantly lower the diffusional resistance associated with the solid phase. This leads to a better utilization of the catalytic material, which is reflected in the higher values for the effectiveness factor, leading ultimately to an enhanced conversion level in the reactor. It is however important to develop a rigorous heterogeneous model for the reactor incorporating the two-dimensional feature of the solid phase owing to the presence of the finite hollow cylindrical catalyst pellet. Presently, heterogeneous models reported in the literature invariably employ one-dimension solid phase models meant for spherical catalyst pellets. The objective of the paper is to present a rigorous model of the fixed-bed reactors containing finite hollow cylindrical catalyst pellets. The reaction kinetics considered here is the widely used Michaelis–Menten kinetics for the liquid-phase bio-chemical reactions. The reaction parameters used here are for the enzymatic degradation of urea. Results indicate that increasing the height to diameter ratio helps to improve the conversion level. On the other hand, decreasing the thickness is apparently not as effective. This could however be explained in terms of the higher void fraction of the bed that causes a smaller amount of the solid phase to be packed in the fixed-bed bio-chemical reactor.

Keywords: Fixed-bed reactor, Finite hollow cylinder, Catalyst pellet, Conversion, Michaelis-Menten kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
225 Valorization of Lignocellulosic Wastes – Evaluation of Its Toxicity When Used in Adsorption Systems

Authors: Isabel Brás, Artur Figueirinha, Bruno Esteves, Luísa P. Cruz-Lopes

Abstract:

The agriculture lignocellulosic by-products are receiving increased attention, namely in the search for filter materials that retain contaminants from water. These by-products, specifically almond and hazelnut shells are abundant in Portugal once almond and hazelnuts production is a local important activity. Hazelnut and almond shells have as main constituents lignin, cellulose and hemicelluloses, water soluble extractives and tannins. Along the adsorption of heavy metals from contaminated waters, water soluble compounds can leach from shells and have a negative impact in the environment. Usually, the chemical characterization of treated water by itself may not show environmental impact caused by the discharges when parameters obey to legal quality standards for water. Only biological systems can detect the toxic effects of the water constituents. Therefore, the evaluation of toxicity by biological tests is very important when deciding the suitability for safe water discharge or for irrigation applications.

The main purpose of the present work was to assess the potential impacts of waters after been treated for heavy metal removal by hazelnut and almond shells adsorption systems, with short term acute toxicity tests.

To conduct the study, water at pH 6 with 25 mg.L-1 of lead, was treated with 10 g of shell per litre of wastewater, for 24 hours. This procedure was followed for each bark. Afterwards the water was collected for toxicological assays; namely bacterial resistance, seed germination, Lemna minor L. test and plant grow. The effect in isolated bacteria strains was determined by disc diffusion method and the germination index of seed was evaluated using lettuce, with temperature and humidity germination control for 7 days. For aquatic higher organism, Lemnas were used with 4 days contact time with shell solutions, in controlled light and temperature. For terrestrial higher plants, biomass production was evaluated after 14 days of tomato germination had occurred in soil, with controlled humidity, light and temperature.

Toxicity tests of water treated with shells revealed in some extent effects in the tested organisms, with the test assays showing a close behaviour as the control, leading to the conclusion that its further utilization may not be considered to create a serious risk to the environment.

Keywords: Acute toxicity tests, adsorption, lignocellulosic wastes, risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
224 Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties

Authors: Omid A. Zargar

Abstract:

In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20–H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.

Keywords: Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
223 Experimental Study of Local Scour Depth around Cylindrical Bridge Pier

Authors: Mohammed T. Shukri

Abstract:

The failure of bridges due to excessive local scour during floods poses a challenging problem to hydraulic engineers. The failure of bridges piers is due to many reasons such as localized scour combined with general riverbed degradation. In this paper, we try to estimate the temporal variation of scour depth at nonuniform cylindrical bridge pier, by experimental work conducted in hydraulic laboratories of Gaziantep University Civil Engineering Department on a flume having dimensions of 8.3 m length, 0.8 m width and 0.9 m depth. The experiments will be carried on 20 cm depth of sediment layer having d50=0.4 mm. Three bridge pier shapes having different scaled models will be constructed in a 1.5m of test section in the channel.

Keywords: Scour, local scour, bridge piers, scour depth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
222 Large-Dimensional Shells under Mining Tremors from Various Mining Regions in Poland

Authors: Joanna M. Dulińska, Maria Fabijańska

Abstract:

In the paper a detailed analysis of the dynamic response of a cooling tower shell to mining tremors originated from two main regions of mining activity in Poland (Upper Silesian Coal Basin and Legnica-Glogow Copper District) was presented. The representative time histories registered in the both regions were used as ground motion data in calculations of the dynamic response of the structure. It was proved that the dynamic response of the shell is strongly dependent not only on the level of vibration amplitudes but on the dominant frequency range of the mining shock typical for the mining region as well. Also a vertical component of vibrations occurred to have considerable influence on the total dynamic response of the shell. Finally, it turned out that non-uniformity of kinematic excitation resulting from spatial variety of ground motion plays a significant role in dynamic analysis of large-dimensional shells under mining shocks.

Keywords: Cooling towers, dynamic response, mining tremors, non-uniform kinematic excitation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
221 Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method

Authors: Farhad Kolahan, Mahdi Abachizadeh

Abstract:

In this paper, a simulated annealing algorithm has been developed to optimize machining parameters in turning operation on cylindrical workpieces. The turning operation usually includes several passes of rough machining and a final pass of finishing. Seven different constraints are considered in a non-linear model where the goal is to achieve minimum total cost. The weighted total cost consists of machining cost, tool cost and tool replacement cost. The computational results clearly show that the proposed optimization procedure has considerably improved total operation cost by optimally determining machining parameters.

Keywords: Optimization, Simulated Annealing, Machining Parameters, Turning Operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
220 Finite Element Analysis for Damped Vibration Properties of Panels Laminated Porous Media

Authors: Y. Kurosawa, T. Yamaguchi

Abstract:

A numerical method is proposed to calculate damping properties for sound-proof structures involving elastic body, viscoelastic body, and porous media. For elastic and viscoelastic body displacement is modeled using conventional finite elements including complex modulus of elasticity. Both effective density and bulk modulus have complex quantities to represent damped sound fields in the porous media. Particle displacement in the porous media is discretised using finite element method. Displacement vectors as common unknown variables are solved under coupled condition between elastic body, viscoelastic body and porous media. Further, explicit expressions of modal loss factor for the mixed structures are derived using asymptotic method. Eigenvalue analysis and frequency responded were calculated for automotive test panel laminated viscoelastic and porous structures using this technique, the results almost agreed with the experimental results.

Keywords: Damping, Porous Media, Finite Element Method, Computer Aided Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
219 Analysis of Flow in Cylindrical Mixing Chamber

Authors: Václav Dvořák

Abstract:

The article deals with numerical investigation of axisymmetric subsonic air to air ejector. An analysis of flow and mixing processes in cylindrical mixing chamber are made. Several modes with different velocity and ejection ratio are presented. The mixing processes are described and differences between flow in the initial region of mixing and the main region of mixing are described. The lengths of both regions are evaluated. Transition point and point where the mixing processes are finished are identified. It was found that the length of the initial region of mixing is strongly dependent on the velocity ratio, while the length of the main region of mixing is dependent on velocity ratio only slightly.

Keywords: Air ejector, mixing chamber, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3976
218 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration

Authors: Shi Qi Koo, Ahmad Beng Hong Kueh

Abstract:

In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90°/0°] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of subelements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.

Keywords: Dynamic finite element, localized interface degeneration, proportional damping, state-space modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
217 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: Antenna pattern, array, signal processing, spatial resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
216 Development of Analytical Model of Bending Force during 3-Roller Conical Bending Process and Its Experimental Verification

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells made from metal plates are widely used in various industrial applications. 3-roller conical bending process is preferably used to produce such conical sections and shells. Bending mechanics involved in the process is complex and little work is done in this area. In the present paper an analytical model is developed to predict bending force which will be acting during 3-roller conical bending process. To verify the developed model, conical bending experiments are performed. Analytical results and experimental results were compared. Force predicted by analytical model is in close proximity of the experimental results. The error in the prediction is ±10%. Hence the model gives quite satisfactory results. Present model is also compared with the previously published bending force prediction model and it is found that the present model gives better results. The developed model can be used to estimate the bending force during 3-roller bending process and can be useful to the designers for designing the 3-roller conical bending machine.

Keywords: Bending-force, Experimental-verification, Internal-moment, Roll-bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4024
215 FEM Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli

Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha

Abstract:

Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in fourpoint bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.

Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
214 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie

Abstract:

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
213 Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet

Authors: Mohammad Asif

Abstract:

Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.

Keywords: Finite hollow cylinder, Catalyst pellet, Effectiveness factor, Thiele Modulus, Conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3707
212 Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells

Authors: S. Tangjuank, N. Insuk , J. Tontrakoon , V. Udeye

Abstract:

Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.

Keywords: Activated carbon, cashew nut shell, heavy metals, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3402
211 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong

Abstract:

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
210 Analytical Modeling of Channel Noise for Gate Material Engineered Surrounded/Cylindrical Gate (SGT/CGT) MOSFET

Authors: Pujarini Ghosh A, Rishu Chaujar B, Subhasis Haldar C, R.S Gupta D, Mridula Gupta E

Abstract:

In this paper, an analytical modeling is presentated to describe the channel noise in GME SGT/CGT MOSFET, based on explicit functions of MOSFETs geometry and biasing conditions for all channel length down to deep submicron and is verified with the experimental data. Results shows the impact of various parameters such as gate bias, drain bias, channel length ,device diameter and gate material work function difference on drain current noise spectral density of the device reflecting its applicability for circuit design applications.

Keywords: Cylindrical/Surrounded gate (SGT/CGT) MOSFET, Gate Material Engineering (GME), Spectral Noise and short channeleffect (SCE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
209 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: Stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
208 Theoretical Density Study of Winding Yarns on Spool

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of work is to define the distribution density of winding yarn on cylindrical and conical bobbins. It is known that parallel winding gives greater density and more regular distribution, but the unwinding of yarn is much more difficult for following process. The conical spool has an enormous advantage during unwinding and may contain a large amount of yarns, but the density distribution is not regular because of difference in diameters. The variation of specific density over the reel height is explained generally by the sudden change of winding speed due to direction movement variation of yarn. We determined the conditions of uniform winding and developed a calculate model to the change of the specific density of winding wire over entire spool height.

Keywords: Textile, cylindrical bobbins, conical bobbins, parallel winding, cross winding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3601
207 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing

Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani

Abstract:

The paper presents an additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.

Keywords: Brazing, Laminated Object Manufacturing, Tensile Lap-Shear Test, Thermo-Mechanical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
206 Influence of Replacement Used Reference Coordinate System for Georeferencing of the Old Map of Europe

Authors: Jakub Havlicek, Jiri Cajthaml

Abstract:

The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. The map was georeferenced into three types of projection – the equal-area conic (original cartographic projection), cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation.

Keywords: Georeferencing, reference coordinate system, transformation, standard deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
205 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac

Abstract:

In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepregs whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analysed through the tests, in this study, the applicability and possibility are proposed.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), Glass Fiber Reinforced Plastic (GFRP), Stainless Wire Mesh, Electromagnetic Shielding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
204 Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating

Authors: G. Rosaz, V. Semblanet, S. Calatroni, A. Sublet, M. Taborelli

Abstract:

We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnetic profiles. These show a good agreement between the expected and actual values. The qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016 A.cm-2 to 0.074 A.cm-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10-3 mbar and a plasma source power of 300 W.

Keywords: Ion energy distribution, niobium, retarding field energy analyzer, sputtering, SRF cavity, unbalanced magnetron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
203 Elastic Strain-Concentration Factor of Cylindrical Bars with Circumferential Flat-Bottom Groove under Static Tension

Authors: Hitham M. Tlilan

Abstract:

Using finite element method (FEM), the elastic new strain-concentration factor (SNCF) of cylindrical bars with circumferential flat-bottom groove is studied. This new SNCF has been defined under triaxial stress state. The employed specimens have constant groove depth with net section and gross diameters of 10.0 and 16.7 mm, respectively. The length of flatness ao has been varied form 0.0 ~12.5 mm to study the elastic SNCF of this type of geometrical irregularities. The results that the elastic new SNCF rapidly drops from its elastic value of the groove with ao = 0.0, i.e. circumferential U-notch, and reaches minimum value at ao = 2 mm. After that the elastic new SNCF becomes nearly constant with increasing flatness length (ao). The value of tensile load at yielding at the groove root increases with increasing ao. The current results show that severity of the notch decreases with increasing flatness length ao.

Keywords: Bar, groove, strain, tension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
202 Closed Form Solution to problem of Calcium Diffusion in Cylindrical Shaped Neuron Cell

Authors: Amrita Tripathi, Neeru Adlakha

Abstract:

Calcium [Ca2+] dynamics is studied as a potential form of neuron excitability that can control many irregular processes like metabolism, secretion etc. Ca2+ ion enters presynaptic terminal and increases the synaptic strength and thus triggers the neurotransmitter release. The modeling and analysis of calcium dynamics in neuron cell becomes necessary for deeper understanding of the processes involved. A mathematical model has been developed for cylindrical shaped neuron cell by incorporating physiological parameters like buffer, diffusion coefficient, and association rate. Appropriate initial and boundary conditions have been framed. The closed form solution has been developed in terms of modified Bessel function. A computer program has been developed in MATLAB 7.11 for the whole approach.

Keywords: Laplace Transform, Modified Bessel function, reaction diffusion equation, diffusion coefficient, excess buffer, calcium influx

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
201 Numerical and Experimental Stress Analysis of Stiffened Cylindrical Composite Shell under Transverse end Load

Authors: J. Arashmehr, G. H. Rahimi, S.F.Rasouli

Abstract:

Grid composite structures have many applications in aerospace industry in which deal with transverse loadings abundantly. In present paper a stiffened composite cylindrical shell with clamped-free boundary condition under transverse end load experimentally and numerically was studied. Some electrical strain gauges were employed to measure the strains. Also a finite element analysis was done for validation of experimental result. The FEM software used was ANSYS11. In addition, the results between stiffened composite shell and unstiffened composite shell were compared. It was observed that intersection of two stiffeners has an important effect in decrease of stress in the shell. Fairly good agreements were observed between the numerical and the measured results. According to recent studies about grid composite structures, it should be noted that any investigation like this research has not been reported.

Keywords: Grid composite structure, Transverse loadings, Strain measurement, Finite element analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
200 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
199 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

Keywords: Photon-drag effect, constant current density, quantum wire, parabolic potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
198 An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

Authors: M.kayhani, M.Nourouzi, A. Amiri Delooei

Abstract:

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Keywords: exact solution, composite laminate, heat conduction, cylinder, Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447