Search results for: fine-grained soils
170 Soil Evaluation for Cashew, Cocoa and Oil Palm in Akure, South-West Nigeria
Authors: Francis Bukola Dada, Samuel Ojo Ajayi, Babatunde Sunday Ewulo, Kehinde Oseni Saani
Abstract:
A key element in the sustainability of the soil-plant relationship in crop yield and performance is the soil's capacity to support tree crops prior to establishment. With the intention of determining the suitability and limitations of the soils of the locations, the northern and southern portions of Akure, a rainforest in Nigeria, were chosen for the suitability evaluation of land for tree crops. In the study area, 16 pedons were established with the help of the Global Positioning System (GPS), the locations were georeferenced and samples were taken from the pedons. The samples were subjected to standard physical and chemical testing. The findings revealed that soils in the research locations were deep to extremely deep, with pH ranging from highly acidic to slightly acidic (4.94 to 6.71). and that sand predominated. The soils had low levels of organic carbon, effective cation exchange capacity (ECEC), total nitrogen, and available phosphorus, whereas exchangeable cations were evaluated as low to moderate. The suitability result indicated that only Pedon 2 and Pedon 14 are currently highly suitable (S1) for the production of oil palms, while others ranged from moderately suitable to marginally suitable. Pedons 4, 12, and 16 were not suitable (N1), respectively, but other Pedons were moderately suitable (S2) and marginally suitable (S3) for the cultivation of cocoa. None of the study areas are currently highly suitable for the production of oil palms. The poor soil texture and low fertility status were the two main drawbacks found. Finally, sound management practices and soil conservation are essential for fertility sustainability.
Keywords: Cashew, cocoa, land evaluation, oil palm, soil fertility suitability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451169 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions
Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad
Abstract:
This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.
Keywords: Fragility analysis, seismic performance, tunnel lining, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390168 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.
Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890167 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)
Authors: Abbas Hani, Seyed Ali Hoseini Abari
Abstract:
Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700166 Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture
Authors: Rachel Bardy Prado, Vinícius de Melo Benites, José Carlos Polidoro, Carlos Eduardo Gonçalves, Alexey Naumov
Abstract:
Most agricultural crops cultivated in Brazil are highly nutrient demanding. Brazilian soils are generally acidic with low base saturation and available nutrients. Demand for fertilizer application has increased because the national agricultural sector expansion. To improve productivity without environmental impact, there is the need for the utilization of novel procedures and techniques to optimize fertilizer application. This includes the digital soil mapping and GIS application applied to mapping in different scales. This paper is based on research, realized during 2005 to 2010 by Brazilian Corporation for Agricultural Research (EMBRAPA) and its partners. The purpose was to map soil fertility in national and regional scales. A soil profile data set in national scale (1:5,000,000) was constructed from the soil archives of Embrapa Soils, Rio de Janeiro and in the regional scale (1:250,000) from COMIGO Cooperative soil data set, Rio Verde, Brazil. The mapping was doing using ArcGIS 9.1 tools from ESRI.Keywords: agricultural sustainability, fertilizer optimization, GIS, soil attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618165 The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for
Authors: Nisa Rachmania Mubarik, Tedja Imas, Aris Tri Wahyudi , Triadiati , Suharyanto, Happy Widiastuti
Abstract:
Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.Keywords: Bradyrhizobium japonicum, acid-aluminium tolerant mutant, Tanggamus cultivar soybean, acid soils
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062164 Characterization, Classification and Agricultural Potentials of Soils on a Toposequence in Southern Guinea Savanna of Nigeria
Authors: B. A. Lawal, A. G. Ojanuga, P. A. Tsado, A. Mohammed
Abstract:
This work assessed some properties of three pedons on a toposequence in Ijah-Gbagyi district in Niger State, Nigeria. The pedons were designated as JG1, JG2 and JG3 representing the upper, middle and lower slopes respectively. The surface soil was characterized by dark yellowish brown (10YR3/4) color at the JG1 and JG2 and very dark grayish brown (10YR3/2) color at JG3. Sand dominated the mineral fraction and its content in the surface horizon decreased down the slope, whereas silt content increased down the slope due to sorting by geological and pedogenic processes. Although organic carbon (OC), total nitrogen (TN) and available phosphorus (P) were rated high, TN and available P decreased down the slope. High cation exchange capacity (CEC) was an indication that the soils have high potential for plant nutrients retention. The pedons were classified as Typic Haplustepts/ Haplic Cambisols (Eutric), Plinthic Petraquepts/ Petric Plinthosols (Abruptic) and Typic Endoaquepts/ Endogleyic Cambisols (Endoclayic).
Keywords: Ecological region, landscape positions, soil characterization, soil classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4337163 Classification of Soil Aptness to Establish of Panicum virgatum in Mississippi using Sensitivity Analysis and GIS
Authors: Eduardo F. Arias, William Cooke III, Zhaofei Fan, William Kingery
Abstract:
During the last decade Panicum virgatum, known as Switchgrass, has been broadly studied because of its remarkable attributes as a substitute pasture and as a functional biofuel source. The objective of this investigation was to establish soil suitability for Switchgrass in the State of Mississippi. A linear weighted additive model was developed to forecast soil suitability. Multicriteria analysis and Sensitivity analysis were utilized to adjust and optimize the model. The model was fit using seven years of field data associated with soils characteristics collected from Natural Resources Conservation System - United States Department of Agriculture (NRCS-USDA). The best model was selected by correlating calculated biomass yield with each model's soils-based output for Switchgrass suitability. Coefficient of determination (r2) was the decisive factor used to establish the 'best' soil suitability model. Coefficients associated with the 'best' model were implemented within a Geographic Information System (GIS) to create a map of relative soil suitability for Switchgrass in Mississippi. A Geodatabase associated with soil parameters was built and is available for future Geographic Information System use.Keywords: Aptness, GIS, sensitivity analysis, switchgrass, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535162 Utilization of Cement Kiln Dust in Adsorption Technology
Authors: Yousef Swesi, Asia Elmeshergi, Abdelati Elalem, Walid Alfoghy
Abstract:
This paper involves a study of the heavy metal pollution of the soils around one of cement plants in Libya called Suk-Alkhameas and surrounding urban areas caused by cement kiln dust (CKD) emitted. Samples of soil was collected from sites at four directions around the cement factory at distances 250m, 1000m, and 3000m from the factory and at (0-10)cm deep in the soil. These samples are analyzed for Fe (iii), Zn(ii), and Pb (ii) as major pollutants. These values are compared with soils at 25 Km distances from the factory as a reference or control samples. The results show that the concentration of Fe ions in the surface soil was within the acceptable range of 1000ppm. However, for Zn and Pb ions the concentrations at the east and north sides of the factory were found six fold higher than the benchmark level. This high value was attributed to the wind which blows usually from south to north and from west to east. This work includes an investigation of the adsorption isotherms and adsorption efficiency of CKD as adsorbent of heavy metal ions (Fe (iii), Zn(ii), and Pb(ii)) from the polluted soils of Suk-Alkameas city. The investigation was conducted in batch and fixed bed column flow technique. The adsorption efficiency of the studied heavy metals ions removals onto CKD depends on the pH of the solution. The optimum pH values are found to be in the ranges of 8-10 and decreases at lower pH values. The removal efficiency of these heavy metals ions ranged from 93% for Pb, 94% for Zn, and 98% for Fe ions for 10 g.l-1 adsorbent concentration. The maximum removal efficiency of these ions was achieved at 50-60 minutes contact times at which equilibrium is reached. Fixed bed column experimental measurements are also made to evaluate CKD as an adsorbent for the heavy metals. Results obtained are with good agreement with Langmuir and Drachsal assumption of multilayer formation on the adsorbent surface.
Keywords: Adsorption, Cement Kiln dust (CKD & CAC), Isotherms, Zn and Pb ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406161 Biodiversity of Micromycetes Isolated from Soils of Different Agricultures in Kazakhstan and Their Plant Growth Promoting Potential
Authors: L. V. Ignatova, Y. V. Brazhnikova, T. D. Mukasheva, A. A. Omirbekova, R. Zh. Berzhanova, R. K. Sydykbekova, T. A. Karpenyuk, A. V. Goncharova
Abstract:
The comparative analysis of different taxonomic groups of microorganisms isolated from dark chernozem soils under different agricultures (alfalfa, melilot, sainfoin, soybean, rapeseed) at Almaty region of Kazakhstan was conducted. It was shown that the greatest number of micromycetes was typical to the soil planted with alfalfa and canola. Species diversity of micromycetes markedly decreases as it approaches the surface of the root, so that the species composition in the rhizosphere is much more uniform than in the virgin soil. Promising strains of microscopic fungi and yeast with plant growth-promoting activity to agricultures were selected. Among the selected fungi there are representatives of Penicillium bilaiae, Trichoderma koningii, Fusarium equiseti, Aspergillus ustus. The highest rates of growth and development of seedlings of plants observed under the influence of yeasts Aureobasidium pullulans, Rhodotorula mucilaginosa, Metschnikovia pulcherrima. Using molecular - genetic techniques confirmation of the identification results of selected micromycetes was conducted.
Keywords: Agricultures, biodiversity, micromycetes, plant growth-promoting microorganisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649160 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits
Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov
Abstract:
A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.
Keywords: Aronia, chemical composition, fruits, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133159 Effect of Subsequent Drying and Wetting on the Small Strain Shear Modulus of Unsaturated Soils
Authors: A. Khosravi, S. Ghadirian, J. S. McCartney
Abstract:
Evaluation of the seismic-induced settlement of an unsaturated soil layer depends on several variables, among which the small strain shear modulus, Gmax, and soil’s state of stress have been demonstrated to be of particular significance. Recent interpretation of trends in Gmax revealed considerable effects of the degree of saturation and hydraulic hysteresis on the shear stiffness of soils in unsaturated states. Accordingly, the soil layer is expected to experience different settlement behaviors depending on the soil saturation and seasonal weathering conditions. In this study, a semi-empirical formulation was adapted to extend an existing Gmax model to infer hysteretic effects along different paths of the SWRC including scanning curves. The suitability of the proposed approach is validated against experimental results from a suction-controlled resonant column test and from data reported in literature. The model was observed to follow the experimental data along different paths of the SWRC, and showed a slight hysteresis in shear modulus along the scanning curves.Keywords: Hydraulic hysteresis, Scanning path, Small strain shear modulus, Unsaturated soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580158 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia
Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan
Abstract:
The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.
Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor, Armenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249157 The Effect of Randomly Distributed Polypropylene Fibers Borogypsum Fly Ash and Cement on Freezing-Thawing Durability of a Fine-Grained Soil
Authors: Ahmet Şahin Zaimoğlu
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6, 12, and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20% BG, 0-20% FA, 0- 0.25% PP and 0-3% of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.Keywords: Additive materials, Freezing-thawing, Optimization, Reinforced soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735156 A Mathematical Model for Predicting Isothermal Soil Moisture Profiles Using Finite Difference Method
Authors: Kasthurirangan Gopalakrishnan, Anshu Manik
Abstract:
Subgrade moisture content varies with environmental and soil conditions and has significant influence on pavement performance. Therefore, it is important to establish realistic estimates of expected subgrade moisture contents to account for the effects of this variable on predicted pavement performance during the design stage properly. The initial boundary soil suction profile for a given pavement is a critical factor in determining expected moisture variations in the subgrade for given pavement and climatic and soil conditions. Several numerical models have been developed for predicting water and solute transport in saturated and unsaturated subgrade soils. Soil hydraulic properties are required for quantitatively describing water and chemical transport processes in soils by the numerical models. The required hydraulic properties are hydraulic conductivity, water diffusivity, and specific water capacity. The objective of this paper was to determine isothermal moisture profiles in a soil fill and predict the soil moisture movement above the ground water table using a simple one-dimensional finite difference model.Keywords: Fill, Hydraulic Conductivity, Pavement, Subgrade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870155 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils
Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee
Abstract:
Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.
Keywords: Shear strength parameters, direct shear test, silty sand, shear stress, shear deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768154 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay
Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand
Abstract:
Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.
Keywords: Nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682153 Biodegradation of PCP by the Rhizobacteria Isolated from Pentachlorophenol-tolerant Crop Species
Authors: Avita K. Marihal, K.S. Jagadeesh, Sarita Sinha
Abstract:
Pentachlorophenol (PCP) is a polychlorinated aromatic compound that is widespread in industrial effluents and is considered to be a serious pollutant. Among the variety of industrial effluents encountered, effluents from tanning industry are very important and have a serious pollution potential. PCP is also formed unintentionally in effluents of paper and pulp industries. It is highly persistent in soils and is lethal to a wide variety of beneficial microorganisms and insects, human beings and animals. The natural processes that breakdown toxic chemicals in the environment have become the focus of much attention to develop safe and environmentfriendly deactivation technologies. Microbes and plants are among the most important biological agents that remove and degrade waste materials to enable their recycling in the environment. The present investigation was carried out with the aim of developing a microbial system for bioremediation of PCP polluted soils. A number of plant species were evaluated for their ability to tolerate different concentrations of pentachlorophenol (PCP) in the soil. The experiment was conducted for 30 days under pot culture conditions. The toxic effect of PCP on plants was studied by monitoring seed germination, plant growth and biomass. As the concentration of PCP was increased to 50 ppm, the inhibition of seed germination, plant growth and biomass was also increased. Although PCP had a negative effect on all plant species tested, maize and groundnut showed the maximum tolerance to PCP. Other tolerating crops included wheat, safflower, sunflower, and soybean. From the rhizosphere soil of the tolerant seedlings, as many as twenty seven PCP tolerant bacteria were isolated. From soybean, 8; sunflower, 3; safflower 8; maize 2; groundnut and wheat, 3 each isolates were made. They were screened for their PCP degradation potentials. HPLC analyses of PCP degradation revealed that the isolate MAZ-2 degraded PCP completely. The isolate MAZ-1 was the next best isolate with 90 per cent PCP degradation. These strains hold promise to be used in the bioremediation of PCP polluted soils.Keywords: Biodegradation, pentachlorophenol, rhizobacteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015152 Magnesium Foliar Application and Phosphorien Soil Inoculation Positively Affect Pisum sativum L. Plants Grown on Sandy Calcareous Soil
Authors: Saad M. Howladar, Ashraf Sh. Osman, Mostafa M. Rady, Hassan S. Al-Zahrani
Abstract:
The effects of soil inoculation with phosphorien-containing phosphate-dissolving bacteria (PDB) and/or magnesium (Mg) foliar application at the rates of 0, 0.5 and 1mM on growth, green pod and seed yields, and chemical constituents of Pisum sativum L. grown on a sandy calcareous soil were investigated. Results indicated that PDB and/or Mg significantly increased shoot length, number of branches plant–1, total leaf area plant–1 and canopy dry weight plant–1, leaf contents of pigments, soluble sugars, free proline, nitrogen, phosphorus, potassium, magnesium, and calcium, and Ca/Na ratio, while leaf Na content was reduced. PDB and/or Mg also increased green pod and seed yields. We concluded that PDB and Mg have pronounced positive effects on Pisum sativum L. plants grown on sandy calcareous soil. PDB and Mg, therefore, have the potential to be applied for various crops to overcome the adverse effects of the newly-reclaimed sandy calcareous soils.
Keywords: Bio-P-fertilizer, Mg foliar application, Newly-reclaimed soils, Pisum sativum L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930151 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method
Authors: Sina Fadaie, Seyed Abolhassan Naeini
Abstract:
Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.
Keywords: Consolidation, coastal embankments, settlement, numerical methods, finite elements method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789150 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.
Keywords: Improvement, shear strength, internal friction angle, sandy soil, rubber chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669149 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem
Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn
Abstract:
At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent-set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.
Keywords: CPTu, pore water pressure, pile rebound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671148 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns
Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem
Abstract:
The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.
Keywords: Bearing capacity, cement dust – lime columns, ground improvement, soft clay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116147 The Effect of Soil in the Allelopathic Potential of Artemisia herba-alba and Oudneya africana Crude Powder on Growth of Weeds
Authors: Salhi Nesrine, Salama M. El-Darier, Halilat M. El-Taher
Abstract:
The present study aimed to investigate the effect of two type of soil (clay and sandy soils) in the potential allelopathic effects of Artemisia herba-alba, Oudneya africana crude powder (0, 1, 3 and 6%) on some growth parameters of two weeds (Bromus tectorum and Melilotus indica) under laboratory conditions (pot experiment).
The experimental findings have reported that the donor species crude powder concentrations were suppressing to shoot length (SL), root length (RL) and the leaf number (LN)) in both soil types and caused a gradual reduction particularly when they are high. However, the reduction degree was varied and species, concentration dependent. The suppressive effect of the two donors on the two weedy species was in the following order Melilotus indica > Bromus tectorum. Generally, the growth parameters of two recipient species were significantly decreased with the increase of each of the donor species crude powder concentration levels. Concerning the type of soil stoical analyses indicated that significant difference between clay and sandy soils.
Keywords: Allelopathy Soil, Artemisia herba-alba, Oudneya africana, growth, weeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094146 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942145 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State
Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi
Abstract:
Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.
Keywords: Soil organic carbon, horizon, pedon, Akure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654144 Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil
Authors: Stella O. Olubodun, George E. Eriyamremu
Abstract:
The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14 and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5 and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle.
Keywords: Antioxidant enzymes, Bonny Light crude oil, Radicle, Mitochondria ATPases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262143 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization
Authors: Ime R. Udotong, Justina I. R. Udotong
Abstract:
Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: ground water > surface water > sediments > soils.Keywords: Microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307142 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)
Authors: A. Bouzekri, H. Benmassaud
Abstract:
Aurèsregion is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.Keywords: Aurès, Land use, remote sensing, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5030141 Health Risk Assessment of Heavy Metals in the Contaminated and Uncontaminated Soils
Authors: S. A. Nta
Abstract:
Application of health risk assessment methods is important in order to comprehend the risk of human exposure to heavy metals and other dangerous pollutants. Four soil samples were collected at distances of 10, 20, 30 m and the control 100 m away from the dump site at depths of 0.3, 0.6 and 0.9 m. The collected soil samples were examined for Zn, Cu, Pb, Cd and Ni using standard methods. The health risks via the main pathways of human exposure to heavy metal were detected using relevant standard equations. Hazard quotient was calculated to determine non-carcinogenic health risk for each individual heavy metal. Life time cancer risk was calculated to determine the cumulative life cancer rating for each exposure pathway. The estimated health risk values for adults and children were generally lower than the reference dose. The calculated hazard quotient for the ingestion, inhalation and dermal contact pathways were less than unity. This means that there is no detrimental concern to the health on human exposure to heavy metals in contaminated soil. The life time cancer risk 5.4 × 10-2 was higher than the acceptable threshold value of 1 × 10-4 which is reflected to have significant health effects on human exposure to heavy metals in contaminated soil. Good hygienic practices are recommended to ease the potential risk to children and adult who are exposed to contaminated soils. Also, the local authorities should be made aware of such health risks for the purpose of planning the management strategy accordingly.
Keywords: Health risk assessment, pollution, heavy metals, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156