Search results for: T cells.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 548

Search results for: T cells.

458 Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates

Authors: Chung-Yao Yang, Lin-Ya Huang, Tang-Long Shen, J. Andrew Yeh

Abstract:

The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research.

Keywords: Nanosponge, Cell adhesion, Cell morphology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
457 Application of Whole Genome Amplification Technique for Genotype Analysis of Bovine Embryos

Authors: S. Moghaddaszadeh-Ahrabi, S. Farajnia, Gh. Rahimi-Mianji, A. Nejati-Javaremi

Abstract:

In recent years, there has been an increasing interest toward the use of bovine genotyped embryos for commercial embryo transfer programs. Biopsy of a few cells in morulla stage is essential for preimplantation genetic diagnosis (PGD). Low amount of DNA have limited performing the several molecular analyses within PGD analyses. Whole genome amplification (WGA) promises to eliminate this problem. We evaluated the possibility and performance of an improved primer extension preamplification (I-PEP) method with a range of starting bovine genomic DNA from 1-8 cells into the WGA reaction. We optimized a short and simple I-PEP (ssI-PEP) procedure (~3h). This optimized WGA method was assessed by 6 loci specific polymerase chain reactions (PCRs), included restriction fragments length polymorphism (RFLP). Optimized WGA procedure possesses enough sensitivity for molecular genetic analyses through the few input cells. This is a new era for generating characterized bovine embryos in preimplantation stage.

Keywords: Whole genome amplification (WGA), Genotyping, Bovine, Preimplantation genetic diagnosis (PGD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
456 Evaluation of Antiglycation Effects of Extracts Obtained from Canarium album Raeusch Fruit and Beneficial Activity on Advanced Glycation Endproduct-Mediated Oxidative Stress and Inflammation in Monocytes and Vascular Endothelial Cells

Authors: Chiung-Tsun Kuoa, Tzu-Hao Liu, Fang-Yi Lin, Tai-Hao Hsu, Hui-Yin Chen

Abstract:

Hyperglycemia-mediated accumulation of advanced glycation end-products (AGEs) play a pivotal role in the development of diabetic complications by inducing inflammation. In the present study, we evaluated the possible effects of water/ethanol (1/1, v/v) extracts (WEE) and its fractions from Canarium album Raeusch. (Chinese olive) which is a fruit used on AGEs-stimulated oxidative stress and inflammation in monocytes and vascular endothelial cells. Co-incubation of EA.hy926 endothelial cells with WEE and its fractions for 24h resulted in a significant decrease of monocyte–endothelial cell adhesion, the expression of ICAM-1, generation of intracellular ROS and depletion of GSH induced by AGEs. Chinese olive fruit extracts also reduced the expression of pro-inflammatory mediates, such as TNF-α, IL-1β and IL-6 in THP-1 cells. These findings suggested that Chinese olive fruit was able to protect vascular endothelium from dysfunction induced by AGEs. 

Keywords: Advanced glycation end-products (AGEs), Canarium album Raeusch, endothelial dysfunction, inflammation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
455 miR-200c as a Biomarker for 5-FU Chemosensitivity in Colorectal Cancer

Authors: Rezvan Najafi, Korosh Heydari, Massoud Saidijam

Abstract:

5-FU is a chemotherapeutic agent that has been used in colorectal cancer (CRC) treatment. However, it is usually associated with the acquired resistance, which decreases the therapeutic effects of 5-FU. miR-200c is involved in chemotherapeutic drug resistance, but its mechanism is not fully understood. In this study, the effect of inhibition of miR-200c in sensitivity of HCT-116 CRC cells to 5-FU was evaluated. HCT-116 cells were transfected with LNA-anti- miR-200c for 48 h. mRNA expression of miR-200c was evaluated using quantitative real- time PCR. The protein expression of phosphatase and tensin homolog (PTEN) and E-cadherin were analyzed by western blotting. Annexin V and propidium iodide staining assay were applied for apoptosis detection. The caspase-3 activation was evaluated by an enzymatic assay. The results showed LNA-anti-miR-200c inhibited the expression of PTEN and E-cadherin protein, apoptosis and activation of caspase 3 compared with control cells. In conclusion, these results suggest that miR-200c as a prognostic marker can overcome to 5-FU chemoresistance in CRC.

Keywords: Colorectal cancer, miR-200c, 5-FU resistance, E-cadherin, PTEN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
454 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: Effective cooling, numerical modeling, photovoltaic cell, triangular ribs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
453 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140
452 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation

Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi

Abstract:

Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.

Keywords: Tumor tissue, antibody, magnetic nanoparticle, CTCs capturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
451 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
450 Biorecognizable Nanoparticles Based On Hyaluronic Acid/Poly(ε-Caprolactone) Block Copolymer

Authors: Jong Ho Hwang, Dae Hwan Kang, Young-IL Jeong

Abstract:

Since hyaluronic acid (HA) receptor such as CD44 is over-expressed at sites of cancer cells, HA can be used as a targeting vehicles for anti-cancer drugs. The aim of this study is to synthesize block copolymer composed of hyaluronic acid and poly(ε-caprolactone) (HAPCL) and to fabricate polymeric micelles for anticancer drug targeting against CD44 receptor of tumor cells. Chemical composition of HAPCL was confirmed using 1H NMR spectroscopy. Doxorubicin (DOX) was incorporated into polymeric micelles of HAPCL. The diameters of HAPHS polymeric micelles were changed around 80nm and have spherical shapes. Targeting potential was investigated using CD44-overexpressing. When DOX-incorporated polymeric micelles was added to KB cells, they revealed strong red fluorescence color while blocking of CD44 receptor by pretreatment of free HA resulted in reduced intensity, indicating that HAPCL polymeric micelles have targetability against CD44 receptor.

Keywords: Hyaluronic acid, CD44 receptor, biorecognizable nanoparticles, block copolymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6002
449 Improved Technique of Non-viral Gene Delivery into Cancer Cells

Authors: D. Vainauska, S. Kozireva, A. Karpovs, M. Chistyakovs, M. Baryshev

Abstract:

Liposomal magnetofection is a simple, highly efficient technology for cell transfection, demonstrating better outcome than a number of other common gene delivery methods. However, aggregate complexes distribution over the cell surface is non-uniform due to the gradient of the permanent magnetic field. The aim of this study was to estimate the efficiency of liposomal magnetofection for prostate carcinoma PC3 cell line using newly designed device, “DynaFECTOR", ensuring magnetofection in a dynamic gradient magnetic field. Liposomal magnetofection in a dynamic gradient magnetic field demonstrated the highest transfection efficiency for PC3 cells – it increased for 21% in comparison with liposomal magnetofection and for 42% in comparison with lipofection alone. The optimal incubation time under dynamic magnetic field for PC3 cell line was 5 minutes and the optimal rotation frequency of magnets – 5 rpm. The new approach also revealed lower cytotoxic effect to cells than liposomal magnetofection.

Keywords: Dynamic gradient magnetic field, gene delivery, liposomal magnetofection, prostate cancer cell line

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
448 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation

Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang

Abstract:

Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.

Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
447 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion

Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta

Abstract:

Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.

Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
446 Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth

Authors: A. Maria G. Melero, A. M. Senna, J. A. Domingues, M. A. Hausen, E. Aparecida R. Duek, V. R. Botaro

Abstract:

A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.

Keywords: Cellulose acetate, hydrogel, biomaterial, cellular growth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161
445 Analysis of a PWM Boost Inverter for Solar Home Application

Authors: Rafia Akhter, Aminul Hoque

Abstract:

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Keywords: Boost Inverter, inverter, duty cycle, PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4617
444 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
443 Neuroblasts Micropatterning on Nanostructural Modified Chitosan Membranes

Authors: Chun-Yen Sung, Chung-Yao Yang, Tzu-Chun Liao, Wen-Shiang Chen, Chao-Min Cheng, J. Andrew Yeh

Abstract:

The study describes chitosan membrane platform modified with nanostructure pattern which using nanotechnology to fabricate. The cell-substrate interaction between neuro-2a neuroblasts cell lines and chitosan membrane (flat, nanostructure and nanostructure pattern types) was investigated. The adhered morphology of neuro-2a cells depends on the topography of chitosan surface. We have found that neuro-2a showed different morphogenesis when cells adhered on flat and nanostructure chitosan membrane. The cell projected area of neuro-2a on flat chitosan membrane is larger than on nanostructure chitosan membrane. In addition, neuro-2a cells preferred to adhere on flat chitosan surface region than on nanostructure chitosan membrane to immobilize and differentiation. The experiment suggests surface topography can be used as a critical mechanism to isolate group of neuro-2a to a particular rectangle area on chitosan membrane. Our finding will provide a platform to take patch clamp to record electrophysiological behavior about neurons in vitro in the future.

Keywords: Chitosan membrane, neuro-2a, wet chemical etching, solvent casting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
442 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of GaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current

Keywords: GaAs solar cell, 1MeV electron irradiation, irradiation fluence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3866
441 Comparative Study on Production of Fructooligosaccharides by p. Simplicissimum Using Immobilized Cells and Conventional Reactor System

Authors: Noraziah A. Y., Mashitah M. D., Subhash Bhatia

Abstract:

Fructooligosaccharides derived from microbial enzyme especially from fungal sources has been received particular attention due to its beneficial effects as prebiotics and mass production. However, fungal fermentation is always cumbersome due to its broth rheology problem that will eventually affect the production of FOS. This study investigated the efficiency of immobilized cell system using rotating fibrous bed bioreactor (RFBB) in producing fructooligosaccharides (FOS). A comparative picture with respect to conventional stirred tank bioreactor (CSTB) and RFBB has been presented. To demonstrate the effect of agitation intensity and aeration rate, a laboratory-scale bioreactor 2.5 L was operated in three phases (high, medium, low) for 48 hours. Agitation speed has a great influence on P. simplicissimum fermentation for FOS production, where the volumetric FOS productivity using RFBB is increased with almost 4 fold compared to the FOS productivity in CSTB that only 0.319 g/L/h. Rate of FOS production increased up to 1.2 fold when immobilized cells system was employed at aeration rate similar to the freely suspended cells at 2.0 vvm.

Keywords: Fructooligosaccharides, immobilized, productivity, prebiotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
440 An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems

Authors: S. Sieniutycz

Abstract:

This paper unifies power optimization approaches in various energy converters, such as: thermal, solar, chemical, and electrochemical engines, in particular fuel cells. Thermodynamics leads to converter-s efficiency and limiting power. Efficiency equations serve to solve problems of upgrading and downgrading of resources. While optimization of steady systems applies the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting systems chemical affinity constitutes a prevailing component of an overall efficiency, thus the power is analyzed in terms of an active part of chemical affinity. The main novelty of the present paper in the energy yield context consists in showing that the generalized heat flux Q (involving the traditional heat flux q plus the product of temperature and the sum products of partial entropies and fluxes of species) plays in complex cases (solar, chemical and electrochemical) the same role as the traditional heat q in pure heat engines. The presented methodology is also applied to power limits in fuel cells as to systems which are electrochemical flow engines propelled by chemical reactions. The performance of fuel cells is determined by magnitudes and directions of participating streams and mechanism of electric current generation. Voltage lowering below the reversible voltage is a proper measure of cells imperfection. The voltage losses, called polarization, include the contributions of three main sources: activation, ohmic and concentration. Examples show power maxima in fuel cells and prove the relevance of the extension of the thermal machine theory to chemical and electrochemical systems. The main novelty of the present paper in the FC context consists in introducing an effective or reduced Gibbs free energy change between products p and reactants s which take into account the decrease of voltage and power caused by the incomplete conversion of the overall reaction.

Keywords: Power yield, entropy production, chemical engines, fuel cells, exergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
439 Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering

Authors: Lu-Chen Yeh‚ Jui-Ming Yeh

Abstract:

In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers was characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multipotentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.

Keywords: Electrospun, polyaniline, neural stem cell, differentiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
438 Immunolabeling of TGF-β during Muscle Regeneration

Authors: K. Nikovics, D. Riccobono, M. Oger, H. Morin, L. Barbier, T. Poyot, X. Holy, A. Bendahmane, M. Drouet, A. L. Favier

Abstract:

Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.

Keywords: Adipose tissue derived stromal/stem cell, cytokine, macrophage, muscle regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
437 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka-Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as biomedical engineering. Selfassembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as microstructure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: Bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
436 Switching Behaviors of HfO2/NiSix Based RRAM

Authors: Z. X. Chen, Z. Fang, X. P. Wang, G. -Q. Lo, D. -L. Kwong, Y. H. Wu

Abstract:

This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si and NiSi cells were good, while the NiSi2 cell could not switch reliably, indicating that the presence of Ni in the bottom electrode is important for good switching.

Keywords: HfO2-based, Ni-silicide, NiSi, resistive RAM (RRAM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
435 Multifunctional Cell Processing with Plasmonic Nanobubbles

Authors: Ekaterina Y. Lukianova-Hleb, Dmitri O. Lapotko

Abstract:

Cell processing techniques for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in heterogeneous cell systems. Using our novel on-demand nonstationary intracellular events instead of permanent materials, plasmonic nanobubbles, generated with a short laser pulse only in target cells, we achieved simultaneous multifunctional cell-specific processing with the rate up to 50 million cells per minute.

Keywords: Delivery, cell separation, graft, laser, plasmonic nanobubble, cell therapy, gold nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
434 Adaptive Discharge Time Control for Battery Operation Time Enhancement

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.

Keywords: Battery, Recovery Effect, Low-Power, Alternating Battery Cell Discharging, Adaptive Discharge Time Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
433 Object Localization in Medical Images Using Genetic Algorithms

Authors: George Karkavitsas, Maria Rangoussi

Abstract:

We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.

Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
432 Cellular Components of the Hemal Node of Egyptian Cattle

Authors: Amira E. Derbalah, Doaa M. Zaghloul

Abstract:

10 clinically healthy hemal nodes were collected from male bulls aged 2-3 years. Light microscopy revealed a capsule of connective tissue consisted mainly of collagen fiber surrounding hemal node, numerous erythrocytes were found in wide subcapsular sinus under the capsule. The parenchyma of the hemal node was divided into cortex and medulla. Diffused lymphocytes, and lymphoid follicles, having germinal centers were the main components of the cortex, while in the medulla there was wide medullary sinus, diffused lymphocytes and few lymphoid nodules. The area occupied with lymph nodules was larger than that occupied with non-nodular structure of lymphoid cords and blood sinusoids. Electron microscopy revealed the cellular components of hemal node including elements of circulating erythrocytes intermingled with lymphocytes, plasma cells, mast cells, reticular cells, macrophages, megakaryocytes and endothelial cells lining the blood sinuses. The lymphocytes were somewhat triangular in shape with cytoplasmic processes extending between adjacent erythrocytes. Nuclei were triangular to oval in shape, lightly stained with clear nuclear membrane indentation and clear nucleoli. The reticular cells were elongated in shape with cytoplasmic processes extending between adjacent lymphocytes, rough endoplasmic reticulum, ribosomes and few lysosomes were seen in their cytoplasm. Nucleus was elongated in shape with less condensed chromatin. Plasma cells were oval to irregular in shape with numerous dilated rough endoplasmic reticulum containing electron lucent material occupying the whole cytoplasm and few mitochondria were found. Nuclei were centrally located and oval in shape with heterochromatin emarginated and often clumped near the nuclear membrane. Occasionally megakaryocytes and mast cells were seen among lymphocytes. Megakaryocytes had multilobulated nucleus and free ribosomes often appearing as small aggregates in their cytoplasm, while mast cell had their characteristic electron dense granule in the cytoplasm, few electron lucent granules were found also, we conclude that, the main function of the hemal node of cattle is proliferation of lymphocytes. No role for plasma cell in erythrophagocytosis could be suggested.

Keywords: Cattle, Electron microscopy, Hemal node, Histology, Immune system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
431 Microencapsulation of Probiotic, Evaluation for Viability and Cytotoxic Activities of Its Postbiotic Metabolites on MCF-7 Breast Cancer Cell Line

Authors: N. V. Enwuru, B. Nkeki, E. A. Adekoya, O. A. Adebesin, B. O. Ojo, R. F. Peters, V. A. Aikhomu, U. E. Mendie, O. Akinloye

Abstract:

Awareness about probiotic health benefits is increasing tremendously. However, cell viability is often low due to harsh conditions exposed during processing, handling, storage, and gastrointestinal transit. Thus, encapsulation is a promising technique that increases cell viability. The study aims to encapsulate the probiotic, evaluate its viability and cytotoxic activity of its postbiotic on the Michigan Cancer Foundation (MCF)-7 breast cancer cell line. Human and animal raw milk was sampled for lactic acid bacteria. Isolated bacteria were identified using conventional and VITEK 2 systems. The identified bacteria were encapsulated using the spray-drying method. The free and encapsulated probiotic cells were exposed to simulated gastric intestinal (SGI) fluid conditions and different storage conditions for their viability. The properties of the formed probiotic granules, their disintegration time, and the weight uniformity of the microcapsules were tested. Furthermore, the postbiotic of the free cells was extracted, and its cytotoxic effect on the MCF-7 breast cancer cell line was tested through [3-(4,5-dimethylthiazolyl-2)-2,5 diphenyltetrazolium bromide] (MTT) assay. The bacteria isolated were identified as Lactobacillus plantarum. The size of the formed probiotic granules ranges within 0.71-1.00 mm in diameter, and disintegration time ranges from 2.14 ± 0.045 to 2.91 ± 0.293 minutes, while the average weight is 502.1 mg. The viability of encapsulated cells stored at refrigerated condition (4oC) was higher than that of cells stored at room temperature (25 oC). The encapsulated probiotic cells exhibited better viability after exposure to SGI solution at different pH levels than free cells. The Postbiotic Metabolites (PM) of L. plantarum produced a cytotoxic effect that shows significant activity similar to 5FU, a standard antineoplastic agent. The inhibition concentration of 50% growth (IC50) of postbiotic metabolite was consistent with the IC50 of the positive control (Cisplatin). Lactobacillus plantarum postbiotic exhibited a cytotoxic effect on the MCF-7 breast cancer cell line and could be used as combined adjuvant therapy in breast cancer management. The microencapsulation technique protects the probiotics and maintains their viability.

Keywords: Cytotoxicity effect, encapsulation, postbiotic, probiotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107
430 Toxic Effect of Sodium Nitrate on Germinating Seeds of Vigna radiata

Authors: Nilima D. Gajbhiye

Abstract:

Sodium nitrate has been used industrially in a number of work fields ranging from agriculture to food industry. Sodium nitrate and nitrite are associated with a higher risk of cancer in human beings. In present study, the effect of sodium nitrate on germinating seeds was studied. Two different sets of ungerminated Vigna radiata seeds were taken. In one set Vigna radiata seeds were soaked in distilled water for 4 hours and they were allowed to germinate in distilled water (Control) and 0.1 to 1% and 10% concentrations of sodium nitrate (NaNo3). In soaked seed set, on 2nd day radical developed in control and 0.1 to 1% concentrations of sodium nitrate. Seeds size was enlarged in 1% and 10% concentrations of sodium nitrate. On 3rd day in 0.1% sodium nitrate length of the radicle was 7.5cm with one leaf let and control sample showed 9cm with one leaflet. On 5th day in 0.1% sodium nitrate length of the radicle was 10 cm with one leaf let and control sample showed 11.5cm with one leaflet. No radicle developed in 1 and 10% NaNo3 concentrations. On 10th day all plants including control were dead. More number of mitotic cells was observed in apical root meristems of control germinating seeds and less mitotic cells were observed in 0.1% NaNo3 germinating seeds. But cells were elongated in 0.9%NaNo3 concentration and particles are deposited in the cells and no mitotic cells were observed. In other sets, dry seeds were allowed to germinate in Distilled water (control) and in 0.1 to 1% and 10% concentrations of sodium nitrate. In dry seed set, on 2nd day radicle developed from control set. In 0.1 to 1% concentrations of sodium nitration seed enlarged in size but but not allowed germination. But in 10% NaNo3 seeds coat colour was changed from dark green to brown. On 3rd day the radicle was developed in 0.1% concentration of NaNo3. No growth of radicle was observed in 0.3 to 10% concentrations of NaNo3 but plumule was observed in control plant. Seed coat color was changed from dark green to brown in color in 1% and 10% NaNo3. On 5th day in control seeds the radicle growth was 11cm and 0.1% NaNo3 concentration was 1.3 cm. On 10th day all plants including control were dead. More number of mitotic cells was observed in apical root meristems of control germinating seeds and less mitotic cells were observed in 0.1% NaNo3 germinating seeds. At higher concentrations of NaNo3 allowed seed germination in soaked seeds but produced radicle decay. In comparison to it, in dry seed set, germination of seeds observed only in 0.1% NaNo3 concentration. The inhibitory effect of NaNo3 on seed germination is due to reduction of water imbibition and mitotic activity.

Keywords: Germinating seeds, NaNo3, Vigna radiate, mitotic activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
429 Fractal Dimension of Breast Cancer Cell Migration in a Wound Healing Assay

Authors: R. Sullivan, T. Holden, G. Tremberger, Jr, E. Cheung, C. Branch, J. Burrero, G. Surpris, S. Quintana, A. Rameau, N. Gadura, H. Yao, R. Subramaniam, P. Schneider, S. A. Rotenberg, P. Marchese, A. Flamhlolz, D. Lieberman, T. Cheung

Abstract:

Migration in breast cancer cell wound healing assay had been studied using image fractal dimension analysis. The migration of MDA-MB-231 cells (highly motile) in a wound healing assay was captured using time-lapse phase contrast video microscopy and compared to MDA-MB-468 cell migration (moderately motile). The Higuchi fractal method was used to compute the fractal dimension of the image intensity fluctuation along a single pixel width region parallel to the wound. The near-wound region fractal dimension was found to decrease three times faster in the MDA-MB- 231 cells initially as compared to the less cancerous MDA-MB-468 cells. The inner region fractal dimension was found to be fairly constant for both cell types in time and suggests a wound influence range of about 15 cell layer. The box-counting fractal dimension method was also used to study region of interest (ROI). The MDAMB- 468 ROI area fractal dimension was found to decrease continuously up to 7 hours. The MDA-MB-231 ROI area fractal dimension was found to increase and is consistent with the behavior of a HGF-treated MDA-MB-231 wound healing assay posted in the public domain. A fractal dimension based capacity index has been formulated to quantify the invasiveness of the MDA-MB-231 cells in the perpendicular-to-wound direction. Our results suggest that image intensity fluctuation fractal dimension analysis can be used as a tool to quantify cell migration in terms of cancer severity and treatment responses.

Keywords: Higuchi fractal dimension, box-counting fractal dimension, cancer cell migration, wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544