Search results for: NIR spectroscopy.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 373

Search results for: NIR spectroscopy.

283 Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route

Authors: A. Morelos-Gómez, S. M. Vega-Díaz, V. J. González, F. Tristán-López, R. Cruz-Silva , K. Fujisawa, H. Muramatsu , T. Hayashi , Xi Mi , Yunfeng Shi , H. Sakamoto , F. Khoerunnisa , K. Kaneko , B. G. Sumpter , Y.A. Kim , V. Meunier, M. Endo , E. Muñoz-Sandoval, M. Terrones

Abstract:

A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.

Keywords: Carbon nanoribbons, carbon nanotubes, unzipping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
282 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties

Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO2 nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO2 nanoparticles was characterized from 30 nm to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.

Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
281 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo

Abstract:

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
280 Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study

Authors: T. Denkçeken, M. Canpolat, Đ. Bassorgun, S. Yücel, M.A. Çiftçioğlu, M. Baykara Murat Canpolat , Tuba Denkçeken , Đbrahim Bassorgun , Selçuk Yücel , M. Akif Çiftçioğlu , Mehmet Baykara

Abstract:

Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.

Keywords: Diagnosis, prostatic neoplasm, prostatectomy, spectrum analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
279 The Data Processing Electronics of the METIS Coronagraph aboard the ESA Solar Orbiter Mission

Authors: M. Focardi, M. Pancrazzi, M. Uslenghi, G. Nicolini, E. Magli, F. Landini, M. Romoli, A. Bemporad, E. Antonucci, S. Fineschi, G. Naletto, P. Nicolosi, D. Spadaro, V. Andretta

Abstract:

METIS is the Multi Element Telescope for Imaging and Spectroscopy, a Coronagraph aboard the European Space Agency-s Solar Orbiter Mission aimed at the observation of the solar corona via both VIS and UV/EUV narrow-band imaging and spectroscopy. METIS, with its multi-wavelength capabilities, will study in detail the physical processes responsible for the corona heating and the origin and properties of the slow and fast solar wind. METIS electronics will collect and process scientific data thanks to its detectors proximity electronics, the digital front-end subsystem electronics and the MPPU, the Main Power and Processing Unit, hosting a space-qualified processor, memories and some rad-hard FPGAs acting as digital controllers.This paper reports on the overall METIS electronics architecture and data processing capabilities conceived to address all the scientific issues as a trade-off solution between requirements and allocated resources, just before the Preliminary Design Review as an ESA milestone in April 2012.

Keywords: Solar Coronagraph, Data Processing Electronics, VIS and UV/EUV Detectors, LEON Processor, Rad-hard FPGAs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
278 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids

Authors: Zharama M. Llarena

Abstract:

Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.

Keywords: Coleus aromaticus, ionic liquid, rosmarinic acid, caffeic acid, chlorogenic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
277 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas

Authors: S.F.S. Draman, R. Daik, A. Musa

Abstract:

Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.

Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
276 Synthesis and Physicochemical Characterization of Biomimetic Scaffold of Gelatin/Zn-Incorporated 58S Bioactive Glass

Authors: Seyed Mohammad Hosseini, Amirhossein Moghanian

Abstract:

The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn) in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) activity tests were carried out for investigation of MC3T3-E1 cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases and also HA characteristic peaks were detected by XRD spectroscopy after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of ALP activity test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity and growth of MC3T3-E1 cells in comparison with other samples in bone tissue engineering.

Keywords: Scaffold, gelatin, modified bioactive glass, ALP, bone tissue engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
275 Application of Voltammetry to Study Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection

Authors: Mandlenkosi George Robert Mahlobo, Peter Apata Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behavior of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP which was only applied on two of the three coupons at the protection potential -0.8 V vs. Cu/CuSO4 for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from ohmic drop. Voltammetry was finally performed the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduce the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect, from the decreased potential, and an induced effect, associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: Carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135
274 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.

Keywords: Ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
273 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures

Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani

Abstract:

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.

Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
272 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140
271 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions

Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou

Abstract:

Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces.  Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.

Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
270 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Authors: Ni Ni Soe , Masahiro Nakagawa

Abstract:

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
269 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite

Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua

Abstract:

In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the assynthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p<0.0001, two way ANOVA), however, these were independent of TEA addition (p>0.15, two way ANOVA). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p<0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.

Keywords: Capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
268 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: M. Gómez-Gómez, M. E. Sánchez-Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductor films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 eV to 1.55 eV for direct transitions and 1.29 eV to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductor devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: Electrical properties, optical gap, phthalocyanine, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
267 Spectroscopic and SEM Investigation of TCPP in Titanium Matrix

Authors: R.Rahimi, F.Moharrami

Abstract:

Titanium gels doped with water-soluble cationic porphyrin were synthesized by the sol–gel polymerization of Ti (OC4H9)4. In this work we investigate the spectroscopic properties along with SEM images of tetra carboxyl phenyl porphyrin when incorporated into porous matrix produced by the sol–gel technique.

Keywords: TCPP, Titanium matrix, UV/Vis spectroscopy, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
266 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.

Keywords: Dentistry, eppawala chloroapatite, hydroxyapatite, orthopedics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
265 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: Mixing ratio, nanofiber, polymer, reference photocatalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
264 PM10 Chemical Characteristics in a Background Site at the Universidad Libre Bogotá

Authors: Laura X. Martinez, Andrés F. Rodríguez, Ruth A. Catacoli

Abstract:

One of the most important factors for air pollution is that the concentrations of PM10 maintain a constant trend, with the exception of some places where that frequently surpasses the allowed ranges established by Colombian legislation. The community that surrounds the Universidad Libre Bogotá is inhabited by a considerable number of students and workers, all of whom are possibly being exposed to PM10 for long periods of time while on campus. Thus, the chemical characterization of PM10 found in the ambient air at the Universidad Libre Bogotá was identified as a problem. A Hi-Vol sampler and EPA Test Method 5 were used to determine if the quality of air is adequate for the human respiratory system. Additionally, quartz fiber filters were utilized during sampling. Samples were taken three days a week during a dry period throughout the months of November and December 2015. The gravimetric analysis method was used to determine PM10 concentrations. The chemical characterization includes non-conventional carcinogenic pollutants. Atomic absorption spectrophotometry (AAS) was used for the determination of metals and VOCs were analyzed using the FTIR (Fourier transform infrared spectroscopy) method. In this way, concentrations of PM10, ranging from values of 13 µg/m3 to 66 µg/m3, were obtained; these values were below standard conditions. This evidence concludes that the PM10 concentrations during an exposure period of 24 hours are lower than the values established by Colombian law, Resolution 610 of 2010; however, when comparing these with the limits set by the World Health Organization (WHO), these concentrations could possibly exceed permissible levels.

Keywords: Air quality, atomic absorption spectrophotometry, Fourier transform infrared spectroscopy, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
263 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto

Abstract:

Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.

Keywords: Stress, functional near-infrared spectroscopy, frontal lobe, state-trait anxiety inventory score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
262 Phytochemical Analysis and Antioxidant Activity of Colocasia esculenta (L.) Leaves

Authors: Amit Keshav, Alok Sharma, Bidyut Mazumdar

Abstract:

Colocasia esculenta leaves and roots are widely used in Asian countries, such as, India, Srilanka and Pakistan, as food and feed material. The root is high in carbohydrates and rich in zinc. The leaves and stalks are often traditionally preserved to be eaten in dry season. Leaf juice is stimulant, expectorant, astringent, appetizer, and otalgia. Looking at the medicinal uses of the plant leaves; phytochemicals were extracted from the plant leaves and were characterized using Fourier-transform infrared spectroscopy (FTIR) to find the functional groups. Phytochemical analysis of Colocasia esculenta (L.) leaf was studied using three solvents (methanol, chloroform, and ethanol) with soxhlet apparatus. Powder of the leaves was employed to obtain the extracts, which was qualitatively and quantitatively analyzed for phytochemical content using standard methods. Phytochemical constituents were abundant in the leave extract. Leaf was found to have various phytochemicals such as alkaloids, glycosides, flavonoids, terpenoids, saponins, oxalates and phenols etc., which could have lot of medicinal benefits such as reducing headache, treatment of congestive heart failure, prevent oxidative cell damage etc. These phytochemicals were identified using UV spectrophotometer and results were presented. In order to find the antioxidant activity of the extract, DPPH (2,2-diphenyl-1-picrylhydrazyl) method was employed using ascorbic acid as standard. DPPH scavenging activity of ascorbic acid was found to be 84%, whereas for ethanol it was observed to be 78.92%, for methanol: 76.46% and for chloroform: 72.46%. Looking at the high antioxidant activity, Colocasia esculenta may be recommended for medicinal applications. The characterizations of functional groups were analyzed using FTIR spectroscopy.

Keywords: Antioxidant activity, Colocasia esculenta, leaves, characterization, FTIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
261 Analysis of the Supramolecular Complex of Kinetin with Glycyrrhizic Acid Using the Chromatography Mass Spectrometry Method

Authors: B. Y. Matmuratov, S. D. Madrakhimova. R. S. Esanov. A. D. Matchanov

Abstract:

Supramolecular complexes of glycyrrhizic acid with kinetin in various molar ratios were obtained, physico-chemical parameters and spectral properties of the resulting complexes were studied (UV, IR, mass spectrometry.

Keywords: Monoammonium salt of glycyrrhizic acid, glycyrrhizic acid, supramolecular complex, isomolar series, IR spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
260 Identification of Flexographic-printed Newspapers with NIR Spectral Imaging

Authors: Raimund Leitner, Susanne Rosskopf

Abstract:

Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.

Keywords: spectral imaging, imaging spectroscopy, NIR, waterbasedflexographic, flexo-printed, recovered paper, real-time classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
259 Ni Metallization on SiGe Nanowire

Authors: Y. Li, K. Buddharaju, X. P. Wang

Abstract:

The mechanism of nickel (Ni) metallization in silicon-germanium (Si0.5Ge0.5) alloy nanowire (NW) was studied. Transmission electron microscope imaging with in-situ annealing was conducted at temperatures of 200oC to 600°C. During rapid formation of Ni germanosilicide, loss of material from from the SiGe NW occurred which led to the formation of a thin Ni germanosilicide filament and eventual void. Energy dispersive X-ray spectroscopy analysis along the SiGe NW before and after annealing determined that Ge atoms tend to out-diffuse from the Ni germanosilicide towards the Ni source in the course of annealing. A model for the Ni germanosilicide formation in SiGe NW is proposed to explain this observation.

Keywords: SiGe, nanowires, germanosilicide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
258 Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

Authors: N. F .Hamedani, A.R. Mahjoub, A. A. khodadadi, Y. Mortazavi, F.Farzaneh

Abstract:

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.

Keywords: Photo catalyst, Nano crystals, Zinc Oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
257 Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Authors: M. Saravanan

Abstract:

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Keywords: Bionanoparticles, UV-visible spectroscopy, AtomicForce Microscopy, Extracellular synthesis, Multi drug resistant, antimicrobial activity, Nanomedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
256 Comparison of Process Slaughtered on Beef Cattle Based on Level of Cortisol and Fourier Transform Infrared Spectroscopy (FTIR)

Authors: Pudji Astuti, C. P. C. Putro, C. M. Airin, L. Sjahfirdi, S. Widiyanto, H. Maheshwari

Abstract:

Stress of slaughter animals starting long before until at the time of process of slaughtering which cause misery and decrease of meat quality. Meanwhile, determination of animal stress using hormonal such as cortisol is expensive and less practical so that portable stress indicator for cows based on Fourier Transform Infrared Spectroscopy (FTIR) must be provided. The aims of this research are to find out the comparison process of slaughter between Rope Casting Local (RCL) and Restraining Box Method (RBM) by measuring of cortisol and wavelength in FTIR methods. Thirty two of male Ongole crossbred cattle were used in this experiment. Blood sampling was taken from jugular vein when they were rested and repeated when slaughtered. All of blood samples were centrifuged at 3000 rpm for 20 minutes to get serum, and then divided into two parts for cortisol assayed using ELISA and for measuring the wavelength using FTIR. The serum then measured at the wavelength between 4000-400 cm-1 using MB3000 FTIR. Band data absorption in wavelength of FTIR is analyzed descriptively by using FTIR Horizon MBTM. For RCL, average of serum cortisol when the animals rested were 11.47 ± 4.88 ng/mL, when the time of slaughter were 23.27 ± 7.84 ng/mL. For RBM, level of cortisol when rested animals were 13.67 ± 3.41 ng/mL and 53.47 ± 20.25 ng/mL during the slaughter. Based on student t-Test, there were significantly different between RBM and RCL methods when beef cattle were slaughtered (P<0.05), but no significantly different when animals were rested (P>0.05). Result of FTIR with the various of wavelength such as methyl group (=CH3 ) 2986cm-1, methylene (=CH2 ) 2827 cm-1, hydroxyl (- OH) 3371 cm-1, carbonyl (ketones) (C=O) 1636 cm-1, carboxyl (COO-1) 1408 cm-1, glucosa 1057 cm-1, urea 1011 cm-1have been obtained. It can be concluded that the RCL slaughtered method is better than the RBM method based on the increase of cortisol as an indicator of stress in beef cattle (P<0.05). FTIR is really possible to be used as stub of stress tool due to differentiate of resting and slaughter condition by recognizing the increase of absorption and the separation of component group at the wavelength.  

Keywords: Cows, cortisol, FTIR, RBM, RCL, stress indicator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
255 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
254 Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite

Authors: M. Meskinfam , M. S. Sadjadi , H. Jazdarreh

Abstract:

In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM and TEM). It seems that by increasing starch content, the more active site of polymer (oxygen atoms) can be provided for interaction with Ca2+ followed by phosphate and hydroxyl group.

Keywords: Biocomposite, Biomimetic, Nano hydroxyapatite, Starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386