Search results for: Mamdani fuzzy logic inference
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1272

Search results for: Mamdani fuzzy logic inference

1182 Improved BEENISH Protocol for Wireless Sensor Networks Based Upon Fuzzy Inference System

Authors: Rishabh Sharma, Renu Vig, Neeraj Sharma

Abstract:

The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.

Keywords: Wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
1181 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base

Authors: M. Hari Prabhu

Abstract:

This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.

Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
1180 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury

Abstract:

This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: Adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
1179 A Fuzzy Logic Based Navigation of a Mobile Robot

Authors: Anis Fatmi, Amur Al Yahmadi, Lazhar Khriji, Nouri Masmoudi

Abstract:

One of the long standing challenging aspect in mobile robotics is the ability to navigate autonomously, avoiding modeled and unmodeled obstacles especially in crowded and unpredictably changing environment. A successful way of structuring the navigation task in order to deal with the problem is within behavior based navigation approaches. In this study, Issues of individual behavior design and action coordination of the behaviors will be addressed using fuzzy logic. A layered approach is employed in this work in which a supervision layer based on the context makes a decision as to which behavior(s) to process (activate) rather than processing all behavior(s) and then blending the appropriate ones, as a result time and computational resources are saved.

Keywords: Behavior based navigation, context based coordination, fuzzy logic, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1178 An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani

Abstract:

This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.

Keywords: Boost Convertors, Power Electronics, PID, Fuzzy logic, Open loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858
1177 Fuzzy Logic and Control Strategies on a Sump

Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli

Abstract:

Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.

Keywords: Fuzzy, sump, level, controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
1176 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
1175 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination

Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili

Abstract:

One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.

Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
1174 Design of Robust Fuzzy Logic Power System Stabilizer

Authors: S. A. Taher, A. Shemshadi

Abstract:

Power system stabilizers (PSS) must be capable of providing appropriate stabilization signals over a broad range of operating conditions and disturbance. Traditional PSS rely on robust linear design method in an attempt to cover a wider range of operating condition. Expert or rule-based controllers have also been proposed. Recently fuzzy logic (FL) as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters & operating conditions. In this paper a novel Robust Fuzzy Logic Power System Stabilizer (RFLPSS) design is proposed The RFLPSS basically utilizes only one measurable Δω signal as input (generator shaft speed). The speed signal is discretized resulting in three inputs to the RFLPSS. There are six rules for the fuzzification and two rules for defuzzification. To provide robustness, additional signal namely, speed are used as inputs to RFLPSS enabling appropriate gain adjustments for the three RFLPSS inputs. Simulation studies show the superior performance of the RFLPSS compared with an optimally designed conventional PSS and discrete mode FLPSS.

Keywords: Controller design, Fuzzy Logic, PID, Power SystemStabilizer, Robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
1173 The Defects Reduction in Injection Molding by Fuzzy Logic based Machine Selection System

Authors: S. Suwannasri, R. Sirovetnukul

Abstract:

The effective machine-job assignment of injection molding machines is very important for industry because it is not only directly affects the quality of the product but also the performance and lifetime of the machine as well. The phase of machine selection was mostly done by professionals or experienced planners, so the possibility of matching a job with an inappropriate machine might occur when it was conducted by an inexperienced person. It could lead to an uneconomical plan and defects. This research aimed to develop a machine selection system for plastic injection machines as a tool to help in decision making of the user. This proposed system could be used both in normal times and in times of emergency. Fuzzy logic principle is applied to deal with uncertainty and mechanical factors in the selection of both quantity and quality criteria. The six criteria were obtained from a plastic manufacturer's case study to construct a system based on fuzzy logic theory using MATLAB. The results showed that the system was able to reduce the defects of Short Shot and Sink Mark to 24.0% and 8.0% and the total defects was reduced around 8.7% per month.

Keywords: Injection molding machine, machine selection, fuzzy logic, defects in injection molding, matlab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
1172 A Cascaded Fuzzy Inference System for Dynamic Online Portals Customization

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

In our modern world, more physical transactions are being substituted by electronic transactions (i.e. banking, shopping, and payments), many businesses and companies are performing most of their operations through the internet. Instead of having a physical commerce, internet visitors are now adapting to electronic commerce (e-Commerce). The ability of web users to reach products worldwide can be greatly benefited by creating friendly and personalized online business portals. Internet visitors will return to a particular website when they can find the information they need or want easily. Dealing with this human conceptualization brings the incorporation of Artificial/Computational Intelligence techniques in the creation of customized portals. From these techniques, Fuzzy-Set technologies can make many useful contributions to the development of such a human-centered endeavor as e-Commerce. The main objective of this paper is the implementation of a Paradigm for the Intelligent Design and Operation of Human-Computer interfaces. In particular, the paradigm is quite appropriate for the intelligent design and operation of software modules that display information (such Web Pages, graphic user interfaces GUIs, Multimedia modules) on a computer screen. The human conceptualization of the user personal information is analyzed throughout a Cascaded Fuzzy Inference (decision-making) System to generate the User Ascribe Qualities, which identify the user and that can be used to customize portals with proper Web links.

Keywords: Fuzzy Logic, Internet, Electronic Commerce, Intelligent Portals, Electronic Shopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
1171 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IPprotocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: Quality of communication, IP-telephony, Fuzzy set, Fuzzy implication, Neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
1170 A Trust Model using Fuzzy Logic in Wireless Sensor Network

Authors: Tae Kyung Kim, Hee Suk Seo

Abstract:

Adapting various sensor devices to communicate within sensor networks empowers us by providing range of possibilities. The sensors in sensor networks need to know their measurable belief of trust for efficient and safe communication. In this paper, we suggested a trust model using fuzzy logic in sensor network. Trust is an aggregation of consensus given a set of past interaction among sensors. We applied our suggested model to sensor networks in order to show how trust mechanisms are involved in communicating algorithm to choose the proper path from source to destination.

Keywords: Fuzzy, Sensor Networks, Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3555
1169 Multisensor Agent Based Intrusion Detection

Authors: Richard A. Wasniowski

Abstract:

In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.

Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1168 Study of Variation of Winds Behavior on Micro Urban Environment with Use of Fuzzy Logic for Wind Power Generation: Case Study in the Cities of Arraial do Cabo and São Pedro da Aldeia, State of Rio de Janeiro, Brazil

Authors: Roberto Rosenhaim, Marcos Antonio Crus Moreira, Robson da Cunha, Gerson Gomes Cunha

Abstract:

This work provides details on the wind speed behavior within cities of Arraial do Cabo and São Pedro da Aldeia located in the Lakes Region of the State of Rio de Janeiro, Brazil. This region has one of the best potentials for wind power generation. In interurban layer, wind conditions are very complex and depend on physical geography, size and orientation of buildings and constructions around, population density, and land use. In the same context, the fundamental surface parameter that governs the production of flow turbulence in urban canyons is the surface roughness. Such factors can influence the potential for power generation from the wind within the cities. Moreover, the use of wind on a small scale is not fully utilized due to complexity of wind flow measurement inside the cities. It is difficult to accurately predict this type of resource. This study demonstrates how fuzzy logic can facilitate the assessment of the complexity of the wind potential inside the cities. It presents a decision support tool and its ability to deal with inaccurate information using linguistic variables created by the heuristic method. It relies on the already published studies about the variables that influence the wind speed in the urban environment. These variables were turned into the verbal expressions that are used in computer system, which facilitated the establishment of rules for fuzzy inference and integration with an application for smartphones used in the research. In the first part of the study, challenges of the sustainable development which are described are followed by incentive policies to the use of renewable energy in Brazil. The next chapter follows the study area characteristics and the concepts of fuzzy logic. Data were collected in field experiment by using qualitative and quantitative methods for assessment. As a result, a map of the various points is presented within the cities studied with its wind viability evaluated by a system of decision support using the method multivariate classification based on fuzzy logic.

Keywords: Behavior of winds, wind power, fuzzy logic, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
1167 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks

Authors: Hae Young Lee, Tae Ho Cho

Abstract:

In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.

Keywords: Fuzzy logic, security, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1166 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki

Abstract:

This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.

Keywords: Fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
1165 Fuzzy Logic Speed Controller with Reduced Rule Base for Dual PMSM Drives

Authors: Jurifa Mat Lazi, Zulkifilie Ibrahim, Marizan Sulaiman, Fizatul Aini Patakor, Siti Noormiza Mat Isa

Abstract:

Dual motor drives fed by single inverter is purposely designed to reduced size and cost with respect to single motor drives fed by single inverter. Previous researches on dual motor drives only focus on the modulation and the averaging techniques. Only a few of them, study the performance of the drives based on different speed controller other than Proportional and Integrator (PI) controller. This paper presents a detailed comparative study on fuzzy rule-base in Fuzzy Logic speed Controller (FLC) for Dual Permanent Magnet Synchronous Motor (PMSM) drives. Two fuzzy speed controllers which are standard and simplified fuzzy speed controllers are designed and the results are compared and evaluated. The standard fuzzy controller consists of 49 rules while the proposed controller consists of 9 rules determined by selecting the most dominant rules only. Both designs are compared for wide range of speed and the robustness of both controllers over load disturbance changes is tested to demonstrate the effectiveness of the simplified/reduced rulebase.

Keywords: Dual Motor Drives, Fuzzy Logic Speed Controller, Reduced Rule-Base, PMSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
1164 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Authors: X. Z. Gao, S. J. Ovaska, X. Wang

Abstract:

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1163 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
1162 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

Authors: M. Zerikat, M. Bendjebbar, N. Benouzza

Abstract:

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
1161 Edge Detection in Digital Images Using Fuzzy Logic Technique

Authors: Abdallah A. Alshennawy, Ayman A. Aly

Abstract:

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4768
1160 Application of Adaptive Network-Based Fuzzy Inference System in Macroeconomic Variables Forecasting

Authors: Ε. Giovanis

Abstract:

In this paper we apply an Adaptive Network-Based Fuzzy Inference System (ANFIS) with one input, the dependent variable with one lag, for the forecasting of four macroeconomic variables of US economy, the Gross Domestic Product, the inflation rate, six monthly treasury bills interest rates and unemployment rate. We compare the forecasting performance of ANFIS with those of the widely used linear autoregressive and nonlinear smoothing transition autoregressive (STAR) models. The results are greatly in favour of ANFIS indicating that is an effective tool for macroeconomic forecasting used in academic research and in research and application by the governmental and other institutions

Keywords: Linear models, Macroeconomics, Neuro-Fuzzy, Non-Linear models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1159 The Location of Park and Ride Facilities Using the Fuzzy Inference Model

Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas

Abstract:

The paper presents a method in which the expert knowledge is applied to fuzzy inference model. Even a less experienced person could benefit from the use of such a system, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed locations can also be verified in a short time. The proposed method is intended for testing of locations of car parks in a city. The paper shows selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analyses of existing objects are also shown in the paper and they are confronted with the opinions of the system users, with particular emphasis on unpopular locations. The results of the analyses are compared to expert analysis of the P&R facilities location that was outsourced by the city and the opinions about existing facilities users that were expressed on social networking sites. The obtained results are consistent with actual users’ feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.

Keywords: Fuzzy logic inference, P&R facilities, P&R location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1158 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor

Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel

Abstract:

This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.

Keywords: IM, FOC, FLC, SMC, and FSMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
1157 Fuzzy Control of the Air Conditioning System at Different Operating Pressures

Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah

Abstract:

The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.

Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3366
1156 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf

Abstract:

Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
1155 Comparison of Proportional Control and Fuzzy Logic Control to Develop an Ideal Thermoelectric Renal Hypothermia System

Authors: Hakan Işık, Esra Saraçoğlu

Abstract:

In this study, a comparison of two control methods, Proportional Control (PC) and Fuzzy Logic Control (FLC), which have been used to develop an ideal thermoelectric renal hypothermia system in order to use in renal surgery, has been carried out. Since the most important issues in long-lasting parenchymatous renal surgery are to provide an operation medium free of blood and to prevent renal dysfunction in the postoperative period, control of the temperature has become very important in renal surgery. The final product is seriously affected from the changes in temperature, therefore, it is necessary to reach some desired temperature points quickly and avoid large overshoot. PIC16F877 microcontroller has been used as controller for both of these two methods. Each control method can simply ensure extra renal hypothermia in the targeted way. But investigation of advantages and disadvantages of every control method to each other is aimed and carried out by the experimental implementations. Shortly, investigation of the most appropriate method to use for development of system and that can be applied to people safely in the future, has been performed. In this sense, experimental results show that fuzzy logic control gives out more reliable responses and efficient performance.

Keywords: renal hypothermia, renal cooling, temperature control, proportional control fuzzy logic control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
1154 Performances Assessment of Direct Torque Controlled IM Drives Using Fuzzy Logic Control and Space Vector Modulation Strategy

Authors: L. Moussaoui, L. Rahmani

Abstract:

This paper deals with the direct torque control (DTC) of the induction motor. This type of control allows decoupling control between the flux and the torque without the need for a transformation of coordinates. However, as with other hysteresis-based systems, the classical DTC scheme represents a high ripple, in both the electromagnetic torque and the stator flux and a distortion in the stator current. As well, it suffers from variable switching frequency. To solve these problems various modifications, in conventional DTC scheme, have been made during the last decade. Indeed the DTC based on space vector modulation (SVM) has proved to generate very low ripples in torque and flux with constant switching frequency. It also shows almost the same dynamic performances as the classical DTC system. On the other hand, fuzzy logic is considered as an interesting alternative approach for its advantages: Analysis close to the exigencies of user, ability of nonlinear systems control, best dynamic performances and inherent quality of robustness.

Therefore, two fuzzy direct torque control approaches, for the induction motor fed by SVM-voltage source inverter, are proposed in this paper. By using these two approaches of DTC, the advantages of fuzzy logic control, space vector modulation, and direct torque control method are combined. The performances of these DTC schemes are evaluated through digital simulation using Matlab/Simulink platform and fuzzy logic tools. Simulation results illustrate the effectiveness and the superiority of the proposed Fuzzy DTC-SVM schemes in comparison to the classical DTC.

Keywords: Direct torque control, Fuzzy logic control, Induction motor, Switching frequency, Space vector modulation, Torque and flux ripples.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
1153 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications

Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo

Abstract:

In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.

Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818