Search results for: Online data updates
6784 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing
Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek
Abstract:
The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.
Keywords: Semiconductor, wafer bin map (WBM), feature extraction, spatial point patterns, contour map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25006783 MRI Reconstruction Using Discrete Fourier Transform: A tutorial
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.
Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51116782 Internet: a New Medium to Promote Traditional Dances in Indonesia
Authors: Maria Satya Rani, Fandy Tjiptono, Suyoto
Abstract:
As a multicultural country, Indonesia has many subcultures with unique performing arts. Some of them are well-known to international tourists, such as music ensemble (known as gamelan) in Bali and Java, shadow puppet play (wayang) in Java, and martial arts (known as pencak silat) in Sumatra. Some examples of famous traditional dances in Indonesia are Srimpi from Yogyakarta and Solo, Legong from Bali, and Gong dance from Kalimantan. Performing arts show the identity of a nation. However, they are a complex subject, especially when they are addressed to children. The performing arts, e.g. music, dance theatre, and opera are experiential, experimental, and emotionally charged. Therefore, the right strategy and promotion need to be developed to engage children to appreciate and preserve traditional dances. This study aims to explore and identify possibilities of internet usage as a medium to promote traditional dances, especially to children in Indonesia.Keywords: children education, culture preservation in Indonesia, national identity, online promotion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21376781 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data
Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez
Abstract:
Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.
Keywords: Feature Selection Stability, Spectral data, Data visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15266780 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection
Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu
Abstract:
Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.Keywords: detection, intersection, mixed traffic, moving objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20336779 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model
Authors: Phornpat Chewasoonthorn, Surat Kwanmuang
Abstract:
Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. In this study, we developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, we present an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.
Keywords: Indoor positioning, ultra-wideband, error correction, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5376778 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. Collecting, managing, and retaining large amounts of data in cloud environments make information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.
Keywords: Cloud compliance, cloud security, cloud security governance, data governance, privacy protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9126777 Algorithm for Information Retrieval Optimization
Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran
Abstract:
When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (Keywords: Internet ranking,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14756776 Ontologies for Social Media Digital Evidence
Authors: Edlira Kalemi, Sule Yildirim-Yayilgan
Abstract:
Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.
Keywords: Criminal digital evidence, social media, ontologies, reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23786775 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.
Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid monitoring, 2015-Nepal earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10566774 Structural Damage Detection via Incomplete Modal Data Using Output Data Only
Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26996773 Broadband PowerLine Communications: Performance Analysis
Authors: Justinian Anatory, Nelson Theethayi, M. M. Kissaka, N. H. Mvungi
Abstract:
Power line channel is proposed as an alternative for broadband data transmission especially in developing countries like Tanzania [1]. However the channel is affected by stochastic attenuation and deep notches which can lead to the limitation of channel capacity and achievable data rate. Various studies have characterized the channel without giving exactly the maximum performance and limitation in data transfer rate may be this is due to complexity of channel modeling being used. In this paper the channel performance of medium voltage, low voltage and indoor power line channel is presented. In the investigations orthogonal frequency division multiplexing (OFDM) with phase shift keying (PSK) as carrier modulation schemes is considered, for indoor, medium and low voltage channels with typical ten branches and also Golay coding is applied for medium voltage channel. From channels, frequency response deep notches are observed in various frequencies which can lead to reduce the achievable data rate. However, is observed that data rate up to 240Mbps is realized for a signal to noise ratio of about 50dB for indoor and low voltage channels, however for medium voltage a typical link with ten branches is affected by strong multipath and coding is required for feasible broadband data transfer.
Keywords: Powerline Communications, branched network, channel model, modulation, channel performance, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18336772 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila
Abstract:
An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.
Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21056771 Understanding and Enhancing Ecotourism Opportunities through Education
Authors: V. Iakovoglou, G. N. Zaimes, M. P. Arraiza Bermúdez-Cañete, J. L. García, M. C. Giménez, C. Calderón- Guerrero, F. Ioras, I. Abrudan
Abstract:
A new fast growing trend in tourism is ecotourism, in which tourists visit natural ecosystems under low impact, nonconsumptive and locally oriented activities. Through these activities species and habitats are maintained and typically, underdeveloped regions are emphasized. Ecotourism provides a great alternative, especially for rural and undeveloped area. At the same time, despite its many benefits, it also poses many risks for the naturally protected areas. If ecotourism is practiced improperly degradation and irreversible damages could be the unwanted result. In addition, the lack of MSc programs in the field of Ecotourism in Europe makes it a necessity to be developed. Such an MSc program is being implemented with the lead partner the Technical University of Madrid. The entire partnership has six Universities, seven SMEs and one National Park from seven different countries all over Europe. The MSc will have 10 educational modules that will be available online and will prepare professionals that will be able to implement ecotourism in a sustainable way. Only through awareness and education a sustainable ecotourism will be achieved in the protected areas of Europe.Keywords: Sustainability, MSc program, protected areas, Erasmus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18736770 Freedom with Limitations: The Nature of Free Expression in the European Case-Law
Authors: Laszlo Vari
Abstract:
In the digital age, the spread of the mobile world and the nature of the cyberspace, offers many new opportunities for the prevalence of the fundamental right to free expression, and therefore, for free speech and freedom of the press; however, these new information communication technologies carry many new challenges. Defamation, censorship, fake news, misleading information, hate speech, breach of copyright etc., are only some of the violations, all of which can be derived from the harmful exercise of freedom of expression, all which become more salient in the internet. Here raises the question: how can we eliminate these problems, and practice our fundamental freedom rightfully? To answer this question, we should understand the elements and the characteristic of the nature of freedom of expression, and the role of the actors whose duties and responsibilities are crucial in the prevalence of this fundamental freedom. To achieve this goal, this paper will explore the European practice to understand instructions found in the case-law of the European Court of Human rights for the rightful exercise of freedom of expression.
Keywords: Collision of rights, European case-law, freedom opinion and expression, media law, freedom of information, online expression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9306769 Spatial Services in Cloud Environment
Authors: Sašo Pečnik, Borut Žalik
Abstract:
Cloud Computing is an approach that provides computation and storage services on-demand to clients over the network, independent of device and location. In the last few years, cloud computing became a trend in information technology with many companies that transfer their business processes and applications in the cloud. Cloud computing with service oriented architecture has contributed to rapid development of Geographic Information Systems. Open Geospatial Consortium with its standards provides the interfaces for hosted spatial data and GIS functionality to integrated GIS applications. Furthermore, with the enormous processing power, clouds provide efficient environment for data intensive applications that can be performed efficiently, with higher precision, and greater reliability. This paper presents our work on the geospatial data services within the cloud computing environment and its technology. A cloud computing environment with the strengths and weaknesses of the geographic information system will be introduced. The OGC standards that solve our application interoperability are highlighted. Finally, we outline our system architecture with utilities for requesting and invoking our developed data intensive applications as a web service.
Keywords: Cloud Computing, Geographic Information System, Open Geospatial Consortium, Interoperability, Spatial data, Web- Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17126768 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012
Authors: Mohammadreza Ashouri, Majid Bayatian
Abstract:
Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.
Keywords: Fire statistics, fire analysis, accident prevention, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7696767 Choosing R-tree or Quadtree Spatial DataIndexing in One Oracle Spatial Database System to Make Faster Showing Geographical Map in Mobile Geographical Information System Technology
Authors: Maruto Masserie Sardadi, Mohd Shafry bin Mohd Rahim, Zahabidin Jupri, Daut bin Daman
Abstract:
The latest Geographic Information System (GIS) technology makes it possible to administer the spatial components of daily “business object," in the corporate database, and apply suitable geographic analysis efficiently in a desktop-focused application. We can use wireless internet technology for transfer process in spatial data from server to client or vice versa. However, the problem in wireless Internet is system bottlenecks that can make the process of transferring data not efficient. The reason is large amount of spatial data. Optimization in the process of transferring and retrieving data, however, is an essential issue that must be considered. Appropriate decision to choose between R-tree and Quadtree spatial data indexing method can optimize the process. With the rapid proliferation of these databases in the past decade, extensive research has been conducted on the design of efficient data structures to enable fast spatial searching. Commercial database vendors like Oracle have also started implementing these spatial indexing to cater to the large and diverse GIS. This paper focuses on the decisions to choose R-tree and quadtree spatial indexing using Oracle spatial database in mobile GIS application. From our research condition, the result of using Quadtree and R-tree spatial data indexing method in one single spatial database can save the time until 42.5%.Keywords: Indexing, Mobile GIS, MapViewer, Oracle SpatialDatabase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40376766 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services
Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.Keywords: Internet of Things, IoT platform, service platform, virtual file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10946765 Service-Oriented Architecture for Object- Centric Information Fusion
Authors: Jeffrey A. Dunne, Kevin Ligozio
Abstract:
In many applications there is a broad variety of information relevant to a focal “object" of interest, and the fusion of such heterogeneous data types is desirable for classification and categorization. While these various data types can sometimes be treated as orthogonal (such as the hull number, superstructure color, and speed of an oil tanker), there are instances where the inference and the correlation between quantities can provide improved fusion capabilities (such as the height, weight, and gender of a person). A service-oriented architecture has been designed and prototyped to support the fusion of information for such “object-centric" situations. It is modular, scalable, and flexible, and designed to support new data sources, fusion algorithms, and computational resources without affecting existing services. The architecture is designed to simplify the incorporation of legacy systems, support exact and probabilistic entity disambiguation, recognize and utilize multiple types of uncertainties, and minimize network bandwidth requirements.Keywords: Data fusion, distributed computing, service-oriented architecture, SOA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14696764 Application of Data Mining Tools to Predicate Completion Time of a Project
Authors: Seyed Hossein Iranmanesh, Zahra Mokhtari
Abstract:
Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.Keywords: Data Mining Techniques, Earned Duration Method, Earned Value, Estimate At Completion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18036763 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16586762 A User Study on the Adoption of Context-Aware Destination Mobile Applications
Authors: Shu-Lu Hsu, Fang-Yi Chu
Abstract:
With the advances in information and communications technology, mobile context-aware applications have become powerful marketing tools. In Apple online store, there are numerous mobile applications (APPs) developed for destination tour. This study investigated the determinants of adoption of context-aware APPs for destination tour services. A model is proposed based on Technology Acceptance Model and privacy concern theory. The model was empirically tested based on a sample of 259 users of a tourism APP published by Kaohsiung Tourism Bureau, Taiwan. The results showed that the fitness of the model is well and, among all the factors, the perceived usefulness and perceived ease of use have the most significant influences on the intention to adopt context-aware destination APPs. Finally, contrary to the findings of previous literature, the effect of privacy concern on the adoption intention of context-aware APP is insignificant.
Keywords: Mobile Application, Context-Aware, Privacy Concern, TAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20996761 Soccer Video Edition Using a Multimodal Annotation
Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid
Abstract:
In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.Keywords: XML, Multimodal Annotation, recommendation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14416760 Learning Object Interface Adapted to the Learner's Learning Style
Authors: Zenaide Carvalho da Silva, Leandro Rodrigues Ferreira, Andrey Ricardo Pimentel
Abstract:
Learning styles (LS) refer to the ways and forms that the student prefers to learn in the teaching and learning process. Each student has their own way of receiving and processing information throughout the learning process. Therefore, knowing their LS is important to better understand their individual learning preferences, and also, understand why the use of some teaching methods and techniques give better results with some students, while others it does not. We believe that knowledge of these styles enables the possibility of making propositions for teaching; thus, reorganizing teaching methods and techniques in order to allow learning that is adapted to the individual needs of the student. Adapting learning would be possible through the creation of online educational resources adapted to the style of the student. In this context, this article presents the structure of a learning object interface adaptation based on the LS. The structure created should enable the creation of the adapted learning object according to the student's LS and contributes to the increase of student’s motivation in the use of a learning object as an educational resource.
Keywords: Adaptation, interface, learning object, learning style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9866759 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.
Keywords: Accelerometer, AdaBoost, GPS, Mode Prediction, Support vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24506758 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data
Authors: Sarabjeet Kaur Kochhar
Abstract:
With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14586757 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol
Authors: Apidet Booranawong
Abstract:
In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.
Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17846756 Rethinking the Analysis of Means-End Chain Data in Marketing Research
Authors: P. Puustinen, A. Kanto
Abstract:
This paper proposes a new procedure for analyzing means-end chain data in marketing research. Most commonly the collected data is summarized in the Hierarchical Value Map (HVM) illustrating the main attribute-consequence-value linkages. This paper argues that traditionally constructed HVM may give an erroneous impression of the results of a means-end study. To justify the arguments, an alternative procedure to (1) determine the dominant attribute-consequence-value linkages and (2) construct HVM in a precise manner is presented. The current approach makes a contribution to means-end analysis, allowing marketers to address a set of marketing problems, such as advertising strategy.
Keywords: Means-end chain analysis, Laddering, Hierarchical Value Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27916755 Neural Network Based Speech to Text in Malay Language
Authors: H. F. A. Abdul Ghani, R. R. Porle
Abstract:
Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.
Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746