Search results for: two speed asynchronous machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2625

Search results for: two speed asynchronous machine

1515 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: Environmental industry, Separator, CFD, Fine aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
1514 Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria

Authors: Oluseyi O. Ajayi, Ohiose D. Ohijeagbon, Mercy Ogbonnaya, Ameh Attabo

Abstract:

The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.

Keywords: Wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
1513 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3768
1512 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion

Authors: Saeed Khorasanizadeh

Abstract:

Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.

Keywords: surface preparation, abrasive particles, adhesionstrength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9077
1511 Crash Severity Modeling in Urban Highways Using Backward Regression Method

Authors: F. Rezaie Moghaddam, T. Rezaie Moghaddam, M. Pasbani Khiavi, M. Ali Ghorbani

Abstract:

Identifying and classifying intersections according to severity is very important for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. Previous studies lacked a model capable of simultaneous illustration of the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Thus, this paper is aimed at developing the models to illustrate the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways.

Keywords: Backward regression, crash severity, speed, urbanhighways.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1510 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.

Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496
1509 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
1508 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1507 High-Efficiency Comparator for Low-Power Application

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.

Keywords: Comparator, low, power, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
1506 Analysis of the Operational Performance of Three Unconventional Arterial Intersection Designs: Median U-Turn, Superstreet and Single Quadrant

Authors: Hana Naghawi, Khair Jadaan, Rabab Al-Louzi, Taqwa Hadidi

Abstract:

This paper is aimed to evaluate and compare the operational performance of three Unconventional Arterial Intersection Designs (UAIDs) including Median U-Turn, Superstreet, and Single Quadrant Intersection using real traffic data. For this purpose, the heavily congested signalized intersection of Wadi Saqra in Amman was selected. The effect of implementing each of the proposed UAIDs was not only evaluated on the isolated Wadi Saqra signalized intersection, but also on the arterial road including both surrounding intersections. The operational performance of the isolated intersection was based on the level of service (LOS) expressed in terms of control delay and volume to capacity ratio. On the other hand, the measures used to evaluate the operational performance on the arterial road included traffic progression, stopped delay per vehicle, number of stops and the travel speed. The analysis was performed using SYNCHRO 8 microscopic software. The simulation results showed that all three selected UAIDs outperformed the conventional intersection design in terms of control delay but only the Single Quadrant Intersection design improved the main intersection LOS from F to B. Also, the results indicated that the Single Quadrant Intersection design resulted in an increase in average travel speed by 52%, and a decrease in the average stopped delay by 34% on the selected corridor when compared to the corridor with conventional intersection design. On basis of these results, it can be concluded that the Median U-Turn and the Superstreet do not perform the best under heavy traffic volumes.

Keywords: Median U-turn, single quadrant, superstreet, unconventional arterial intersection design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
1505 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, privet, impact cutting, shear energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1504 A New Version of Annotation Method with a XML-based Knowledge Base

Authors: Mohammad Yasrebi, Somayeh Khosravi

Abstract:

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

Keywords: Knowledge base, ontology, semantic annotation, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
1503 Improvement of Overall Equipment Effectiveness through Total Productive Maintenance

Authors: S. Fore, L. Zuze

Abstract:

Frequent machine breakdowns, low plant availability and increased overtime are a great threat to a manufacturing plant as they increase operating costs of an industry. The main aim of this study was to improve Overall Equipment Effectiveness (OEE) at a manufacturing company through the implementation of innovative maintenance strategies. A case study approach was used. The paper focuses on improving the maintenance in a manufacturing set up using an innovative maintenance regime mix to improve overall equipment effectiveness. Interviews, reviewing documentation and historical records, direct and participatory observation were used as data collection methods during the research. Usually production is based on the total kilowatt of motors produced per day. The target kilowatt at 91% availability is 75 Kilowatts a day. Reduced demand and lack of raw materials particularly imported items are adversely affecting the manufacturing operations. The company had to reset its targets from the usual figure of 250 Kilowatt per day to mere 75 per day due to lower availability of machines as result of breakdowns as well as lack of raw materials. The price reductions and uncertainties as well as general machine breakdowns further lowered production. Some recommendations were given. For instance, employee empowerment in the company will enhance responsibility and authority to improve and totally eliminate the six big losses. If the maintenance department is to realise its proper function in a progressive, innovative industrial society, then its personnel must be continuously trained to meet current needs as well as future requirements. To make the maintenance planning system effective, it is essential to keep track of all the corrective maintenance jobs and preventive maintenance inspections. For large processing plants these cannot be handled manually. It was therefore recommended that the company implement (Computerised Maintenance Management System) CMMS.

Keywords: Maintenance, Manufacturing, Overall Equipment Effectiveness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3988
1502 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: Natural fiber-reinforced composites, machinability, thrust force, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
1501 A Method to Calculate Frenet Apparatus of W-Curves in the Euclidean 6-Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

These In this work, a regular unit speed curve in six dimensional Euclidean space, whose Frenet curvatures are constant, is considered. Thereafter, a method to calculate Frenet apparatus of this curve is presented.

Keywords: Classical Differential Geometry, Euclidean 6-space, Frenet Apparatus of the curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
1500 Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1499 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: Automation, human factors, air traffic controller, MINIMA, OOTL, Out-Of-The-Loop, EEG, electroencephalography, HMI, human machine interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
1498 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO2 capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
1497 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: Energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
1496 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches

Authors: S. Shakibaei, P. Alpkokin

Abstract:

The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.

Keywords: Deregulation, high-speed rail, liberalization, privatization, public-private partnership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
1495 Data Oriented Model of Image: as a Framework for Image Processing

Authors: A. Habibizad Navin, A. Sadighi, M. Naghian Fesharaki, M. Mirnia, M. Teshnelab, R. Keshmiri

Abstract:

This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.

Keywords: Data oriented modelling, image, clustering, segmentation, classification, ADBT and image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
1494 Optical Flow Technique for Supersonic Jet Measurements

Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi

Abstract:

This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1493 Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
1492 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
1491 Industrial Compressor Anti-Surge Computer Control

Authors: Ventzas Dimitrios, Petropoulos George

Abstract:

The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.

Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8965
1490 Disparity Estimation for Objects of Interest

Authors: Yen San Yong, Hock Woon Hon

Abstract:

An algorithm for estimating the disparity of objects of interest is proposed. This algorithm uses image shifting and overlapping area to estimate the disparity value; thereby depth of the objects of interest can be obtained. The algorithm is able to perform at different levels of accuracy. However, as the accuracy increases the processing speed decreases. The algorithm is tested with static stereo images and sequence of stereo images. The experimental results are presented in this paper.

Keywords: stereo vision, binocular parallax

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
1489 Sensorless Control of Induction Motor: Design and Stability Analysis

Authors: Nadia Bensiali, Erik Etien, Amar Omeiri, Gerard Champenois

Abstract:

Adaptive observers used in sensorless control of induction motors suffer from instability especally in regenerating mode. In this paper, an optimal feed back gain design is proposed, it can reduce the instability region in the torque speed plane .

Keywords: Induction motor drive, adaptive observer, regenerating mode, stabilizing design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
1488 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1487 Contextual Distribution for Textual Alignment

Authors: Yuri Bizzoni, Marianne Reboul

Abstract:

Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.

Keywords: Translation studies, machine translation, computational linguistics, distributional semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1486 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775