Search results for: network estimation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3677

Search results for: network estimation.

2567 A Comparative Study on Available IPv6 Platforms for Wireless Sensor Network

Authors: Usman Sarwar, Gopinath Sinniah Rao, Zeldi Suryady, Reza Khoshdelniat

Abstract:

The low power wireless sensor devices which usually uses the low power wireless private area network (IEEE 802.15.4) standard are being widely deployed for various purposes and in different scenarios. IPv6 low power wireless private area network (6LoWPAN) was adopted as part of the IETF standard for the wireless sensor devices so that it will become an open standard compares to other dominated proprietary standards available in the market. 6LoWPAN also allows the integration and communication of sensor nodes with the Internet more viable. This paper presents a comparative study on different available IPv6 platforms for wireless sensor networks including open and close sources. It also discusses about the platforms used by these stacks. Finally it evaluates and provides appropriate suggestions which can be use for selection of required IPv6 stack for low power devices.

Keywords: 6LoWPAN Stacks, 6LoWPAN Platforms, m-Stack, NanoStack, uIPv6, PhyNet 6LoWPAN, Jennic 6LoWPAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
2566 An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks

Authors: P.S. Prakash, S. Selvan

Abstract:

Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.

Keywords: QoS Routing, Optimization, feasible path, multiple constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
2565 Abnormal IP Packets on 3G Mobile Data Networks

Authors: Joo-Hyung Oh, Dongwan Kang, JunHyung Cho, Chaetae Im

Abstract:

As the mobile Internet has become widespread in recent years, communication based on mobile networks is increasing. As a result, security threats have been posed with regard to the abnormal traffic of mobile networks, but mobile security has been handled with focus on threats posed by mobile malicious codes, and researches on security threats to the mobile network itself have not attracted much attention. In mobile networks, the IP address of the data packet is a very important factor for billing purposes. If one mobile terminal use an incorrect IP address that either does not exist or could be assigned to another mobile terminal, billing policy will cause problems. We monitor and analyze 3G mobile data networks traffics for a period of time and finds some abnormal IP packets. In this paper, we analyze the reason for abnormal IP packets on 3G Mobile Data Networks. And we also propose an algorithm based on IP address table that contains addresses currently in use within the mobile data network to detect abnormal IP packets.

Keywords: WCDMA, 3G, Abnormal IP address, Mobile Data Network Attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
2564 Dual Band Fractal Antenna for Wireless Sensor Network Application

Authors: M. Shanmugapriya, M. A. Maluk Mohamed, J. William

Abstract:

A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network. These nodes communicate through a wireless antenna. Reduction in physical size and multiband operation is an important requirement of WSN antenna. Fractal antenna is used for miniaturization and multiband operation. The self-similar or self-affine and space filling property of fractal geometry increases the effective electrical length of the antenna, reduces the size and make them frequency independent. This paper elaborates on Dual band fractal antenna with Coplanar Waveguide (CPW) feed for WSN. The proposed antenna is designed on a FR4 substrate with the dimension of 27mm x 28.5mm x 1.6mm, resonates at 2.4GHz and 5.2GHz with a return loss less than -10dB. The design and simulation process is carried out using IE3D simulation software. The simulated and measured results are found in good agreement.

Keywords: CPW, Fractal, Iterations, Miniaturization, Space filling, Self Similar, WSN, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
2563 Effects of Variations in Generator Inputs for Small Signal Stability Studies of a Three Machine Nine Bus Network

Authors: Hemalan Nambier a/l Vijiyan, Agileswari K. Ramasamy, Au Mau Teng, Syed Khaleel Ahmed

Abstract:

Small signal stability causes small perturbations in the generator that can cause instability in the power network. It is generally known that small signal stability are directly related to the generator and load properties. This paper examines the effects of generator input variations on power system oscillations for a small signal stability study. Eigenvaules and eigenvectors are used to examine the stability of the power system. The dynamic power system's mathematical model is constructed and thus calculated using load flow and small signal stability toolbox on MATLAB. The power system model is based on a 3-machine 9-bus system that was modified to suit this study. In this paper, Participation Factors are a means to gauge the effects of variation in generation with other parameters on the network are also incorporated.

Keywords: Eigen-analysis, generation modeling, participationfactor, small signal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
2562 Region-Based Image Fusion with Artificial Neural Network

Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng

Abstract:

For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.

Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
2561 Energy Aware Adhoc On-demand Multipath Distance Vector Protocol for QoS Routing

Authors: J. Seetaram, P. Satish Kumar

Abstract:

Mobile Adhoc Networks (MANETs) are infrastructure-less, dynamic network of collections of wireless mobile nodes communicating with each other without any centralized authority. A MANET is a mobile device of interconnections through wireless links, forming a dynamic topology. Routing protocols have a big role in data transmission across a network. Routing protocols, two major classifications are unipath and multipath. This study evaluates performance of an on-demand multipath routing protocol named Adhoc On-demand Multipath Distance Vector routing (AOMDV). This study proposes Energy Aware AOMDV (EAAOMDV) an extension of AOMDV which decreases energy consumed on a route.

Keywords: Mobile Adhoc Network (MANET), unipath, multipath, Adhoc On-demand Multipath Distance Vector routing (AOMDV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
2560 Leveraging Li-Fi to Enhance Security and Performance of Medical Devices

Authors: Trevor Kroeger, Hayden Williams, Edward Holzinger, David Coleman, Brian Haberman

Abstract:

The network connectivity of medical devices is increasing at a rapid rate. Many medical devices, such as vital sign monitors, share information via wireless or wired connections. However, these connectivity options suffer from a variety of well-known limitations. Wireless connectivity, especially in the unlicensed radio frequency bands, can be disrupted. Such disruption could be due to benign reasons, such as a crowded spectrum, or to malicious intent. While wired connections are less susceptible to interference, they inhibit the mobility of the medical devices, which could be critical in a variety of scenarios. This work explores the application of Light Fidelity (Li-Fi) communication to enhance the security, performance, and mobility of medical devices in connected healthcare scenarios. A simple bridge for connected devices serves as an avenue to connect traditional medical devices to the Li-Fi network. This bridge was utilized to conduct bandwidth tests on a small Li-Fi network installed into a Mock-ICU setting with a backend enterprise network similar to that of a hospital. Mobile and stationary tests were conducted to replicate various different situations that might occur within a hospital setting. Results show that in room Li-Fi connectivity provides reasonable bandwidth and latency within a hospital like setting.

Keywords: Hospital, light fidelity, Li-Fi, medical devices, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
2559 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks

Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi

Abstract:

Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.

Keywords: Fiber-Wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
2558 Social Network Analysis & Information Disclosure: A Case Study

Authors: Shilpi Sharma, J. S. Sodhi

Abstract:

The advent of social networking technologies has been met with mixed reactions in academic and corporate circles around the world. This study explored the influence of social network in current era, the relation being maintained between the Social networking site and its user by the extent of use, benefits and latest technologies. The study followed a descriptive research design wherein a questionnaire was used as the main research tool. The data collected was analyzed using SPSS 16. Data was gathered from 1205 users and analyzed in accordance with the objectives of the study. The analysis of the results seem to suggest that the majority of users were mainly using Facebook, despite of concerns raised about the disclosure of personal information on social network sites, users continue to disclose huge quantity of personal information, they find that reading privacy policy is time consuming and changes made can result into improper settings.

Keywords: Social Networking Sites, Privacy Policy, Disclosure of Personal Information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
2557 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes

Authors: Baghdasaryan Marinka

Abstract:

The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.

Keywords: Electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
2556 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm

Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako

Abstract:

There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.

Keywords: Capacitor banks, IEEE bus 14-network, Pre-insertion resistor, Standalone wind farm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2555 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
2554 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
2553 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer

Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser

Abstract:

In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, DNA microarray data, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
2552 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
2551 Security in Resource Constraints Network Light Weight Encryption for Z-MAC

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.

Keywords: Hybrid MAC protocol, data integrity, lightweight encryption, Neighbor based key sharing, Sensor node data processing, Z-MAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
2550 Tree-on-DAG for Data Aggregation in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Keywords: Aggregation, Packet Merging, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
2549 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5048
2548 Agents Network on a Grid: An Approach with the Set of Circulant Operators

Authors: Babiga Birregah, Prosper K. Doh, Kondo H. Adjallah

Abstract:

In this work we present some matrix operators named circulant operators and their action on square matrices. This study on square matrices provides new insights into the structure of the space of square matrices. Moreover it can be useful in various fields as in agents networking on Grid or large-scale distributed self-organizing grid systems.

Keywords: Pascal matrices, Binomial Recursion, Circulant Operators, Square Matrix Bipartition, Local Network, Parallel networks of agents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
2547 Dynamic Cellular Remanufacturing System (DCRS) Design

Authors: Tariq Aljuneidi, Akif Asil Bulgak

Abstract:

An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that considers CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.

Keywords: Cellular Manufacturing System, Remanufacturing, Mathematical Programming, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
2546 Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop

Authors: Amin Sahraeian

Abstract:

One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.

Keywords: parallel flow shop, make span, linear programming, budget

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
2545 Wavelet - Based Classification of Outdoor Natural Scenes by Resilient Neural Network

Authors: Amitabh Wahi, Sundaramurthy S.

Abstract:

Natural outdoor scene classification is active and promising research area around the globe. In this study, the classification is carried out in two phases. In the first phase, the features are extracted from the images by wavelet decomposition method and stored in a database as feature vectors. In the second phase, the neural classifiers such as back-propagation neural network (BPNN) and resilient back-propagation neural network (RPNN) are employed for the classification of scenes. Four hundred color images are considered from MIT database of two classes as forest and street. A comparative study has been carried out on the performance of the two neural classifiers BPNN and RPNN on the increasing number of test samples. RPNN showed better classification results compared to BPNN on the large test samples.

Keywords: BPNN, Classification, Feature extraction, RPNN, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
2544 Modeling and Performance Evaluation of LTE Networks with Different TCP Variants

Authors: Ghassan A. Abed, Mahamod Ismail, Kasmiran Jumari

Abstract:

Long Term Evolution (LTE) is a 4G wireless broadband technology developed by the Third Generation Partnership Project (3GPP) release 8, and it's represent the competitiveness of Universal Mobile Telecommunications System (UMTS) for the next 10 years and beyond. The concepts for LTE systems have been introduced in 3GPP release 8, with objective of high-data-rate, low-latency and packet-optimized radio access technology. In this paper, performance of different TCP variants during LTE network investigated. The performance of TCP over LTE is affected mostly by the links of the wired network and total bandwidth available at the serving base station. This paper describes an NS-2 based simulation analysis of TCP-Vegas, TCP-Tahoe, TCPReno, TCP-Newreno, TCP-SACK, and TCP-FACK, with full modeling of all traffics of LTE system. The Evaluation of the network performance with all TCP variants is mainly based on throughput, average delay and lost packet. The analysis of TCP performance over LTE ensures that all TCP's have a similar throughput and the best performance return to TCP-Vegas than other variants.

Keywords: LTE; EUTRAN; 3GPPP, SAE; TCP Variants; NS-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277
2543 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network

Authors: Anamika Jain, A. S. Thoke, R. N. Patel

Abstract:

This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.

Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3187
2542 A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach

Authors: D. A. Farinde

Abstract:

One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.

Keywords: Bank, Bankruptcy, Financial Ratios, Neural Network, Multilayer Perceptron, Predictive Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
2541 An Approach to Measure Snow Depth of Winter Accumulation at Basin Scale Using Satellite Data

Authors: M. Geetha Priya, D. Krishnaveni

Abstract:

Snow depth estimation and monitoring studies have been carried out for decades using empirical relationship or extrapolation of point measurements carried out in field. With the development of advanced satellite based remote sensing techniques, a modified approach is proposed in the present study to estimate the winter accumulated snow depth at basin scale. Assessment of snow depth by differencing Digital Elevation Model (DEM) generated at the beginning and end of winter season can be experimented for the region of interest (Himalayan and polar regions) accounting for winter accumulation (solid precipitation). The proposed approach is based on existing geodetic method that is being used for glacier mass balance estimation. Considering the satellite datasets purely acquired during beginning and end of winter season, it is possible to estimate the change in depth or thickness for the snow that is accumulated during the winter as it takes one year for the snow to get transformed into firn (snow that has survived one summer or one-year old snow).

Keywords: Digital elevation model, snow depth, geodetic method, snow cover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
2540 Continuity Planning in Supply Chain Networks: Degrees of Freedom and Application in the Risk Management Process

Authors: Marco Bötel, Tobias Gelau, Wendelin Gross

Abstract:

Supply chain networks are frequently hit by unplanned events which lead to disruptions and cause operational and financial consequences. It is neither possible to avoid disruption risk entirely, nor are network members able to prepare for every possible disruptive event. Therefore a continuity planning should be set up which supports effective operational responses in supply chain networks in times of emergencies. In this research network related degrees of freedom which determine the options for responsive actions are derived from interview data. The findings are further embedded into a common risk management process. The paper provides support for researchers and practitioners to identify the network related options for responsive actions and to determine the need for improving the reaction capabilities.

Keywords: Supply Chain Risk Management, Business Continuity Planning, Degrees of Freedom, Risk Management Process, Mitigation Measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
2539 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve

Authors: M. Y. Misro, A. Ramli, J. M. Ali

Abstract:

Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use different approach to find the best approximation for the curve so that it will resembles highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first, the Bezier curve estimates the real shape of the curve which can be verified visually. Even though, fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed are acceptable. We verified our result with the manual calculation of the curvature from the map.

Keywords: Speed estimation, path constraints, reference trajectory, Bezier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057
2538 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network

Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh

Abstract:

End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.

Keywords: End milling, Surface roughness, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164