Search results for: statistical signal processing.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3603

Search results for: statistical signal processing.

2523 Research on Load Balancing Technology for Web Service Mobile Host

Authors: Yao Lu, Xiuguo Zhang, Zhiying Cao

Abstract:

In this paper, Load Balancing idea is used in the Web service mobile host. The main idea of Load Balancing is to establish a one-to-many mapping mechanism: An entrance-mapping request to plurality of processing node in order to realize the dividing and assignment processing. Because the mobile host is a resource constrained environment, there are some Web services which cannot be completed on the mobile host. When the mobile host resource is not enough to complete the request, Load Balancing scheduler will divide the request into a plurality of sub-requests and transfer them to different auxiliary mobile hosts. Auxiliary mobile host executes sub-requests, and then, the results will be returned to the mobile host. Service request integrator receives results of sub-requests from the auxiliary mobile host, and integrates the sub-requests. In the end, the complete request is returned to the client. Experimental results show that this technology adopted in this paper can complete requests and have a higher efficiency.

Keywords: Dinic, load balancing, mobile host, web service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
2522 A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids

Authors: K. Krishna Naik, M. N. Giri Prasad

Abstract:

These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.

Keywords: AP, RSSI, RPM, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
2521 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
2520 Analysis of Organizational Factors Effect on Performing Electronic Commerce Strategy: A Case Study of the Namakin Food Industry

Authors: Seyed Hamidreza Hejazi Dehghani, Neda Khounsari

Abstract:

Quick growth of electronic commerce in developed countries means that developing nations must change in their commerce strategies fundamentally. Most organizations are aware of the impact of the Internet and e-Commerce on the future of their firm, and thus, they have to focus on organizational factors that have an effect on the deployment of an e-Commerce strategy. In this situation, it is essential to identify organizational factors such as the organizational culture, human resources, size, structure and product/service that impact an e-commerce strategy. Accordingly, this research specifies the effects of organizational factors on applying an e-commerce strategy in the Namakin food industry. The statistical population of this research is 95 managers and employees. Cochran's formula is used for determination of the sample size that is 77 of the statistical population. Also, SPSS and Smart PLS software were utilized for analyzing the collected data. The results of hypothesis testing show that organizational factors have positive and significant effects of applying an e-Commerce strategy. On the other hand, sub-hypothesizes show that effectiveness of the organizational culture and size criteria were rejected and other sub-hypothesis were accepted.

Keywords: Electronic commerce, organizational factors, attitude of managers, organizational readiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986
2519 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface

Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain

Abstract:

One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.

Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2518 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple factorial correspondence analysis, principal component analysis, factor analysis, E.U.-28 countries, statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
2517 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: Channel estimation, OFDM, pilot-assist, VLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
2516 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility

Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata

Abstract:

Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.

Keywords: Chemical Processing Facility, medium- and long-term management plan of JAEA Facilities, STRAD project, treatment of radioactive waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
2515 Signals from the Rocks

Authors: Ernst D. Schmitter

Abstract:

There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.

Keywords: Earthquakes, ELF, EM signals from material under load, signal propagation in conductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2514 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
2513 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis

Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani

Abstract:

Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.

Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
2512 Research on Self-Perceptions of Pre-Service Turkish Language Teachers in Turkey with Regard to Problem Solving Skills

Authors: Canan Aslan

Abstract:

The aim of this research is to determine how preservice Turkish teachers perceive themselves in terms of problem solving skills. Students attending Department of Turkish Language Teaching of Gazi University Education Faculty in 2005-2006 academic year constitute the study group (n= 270) of this research in which survey model was utilized. Data were obtained by Problem Solving Inventory developed by Heppner & Peterson and Personal Information Form. Within the settings of this research, Cronbach Alpha reliability coefficient of the scale was found as .87. Besides, reliability coefficient obtained by split-half technique which splits odd and even numbered items of the scale was found as r=.81 (Split- Half Reliability). The findings of the research revealed that preservice Turkish teachers were sufficiently qualified on the subject of problem solving skills and statistical significance was found in favor of male candidates in terms of “gender" variable. According to the “grade" variable, statistical significance was found in favor of 4th graders.

Keywords: Problem Solving, problem solving skills, PreserviceTurkish Language Teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
2511 FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, Pasta, moisture determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
2510 Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum

Authors: A. Magesh, B. Preetha, T. Viruthagiri

Abstract:

Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.

Keywords: Fusarium oxysporum, Lignocellulosic biomass, Product formation kinetics, Statistical experimental design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
2509 Filtering and Reconstruction System for Gray Forensic Images

Authors: Ahd Aljarf, Saad Amin

Abstract:

Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.

Keywords: Image Filtering, Image Reconstruction, Image Processing, Forensic Images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
2508 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2507 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions

Authors: Ilke Senol

Abstract:

Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.

Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6992
2506 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
2505 Behavior of Media Exposure and Participation in Environmental Activities of King Mongkut-s University of Technology Thonburi Dormitory Students

Authors: Kuntida Thamwipat, Sorakrich Maneewan, Thanarat Pumjaroen

Abstract:

The purposes of this research were 1) to investigate behavior of media exposure and participation in environmental activities of King Mongkut-s University of Technology Thonburi (KMUTT) dormitory students, 2) to compare the correlation between faculties and participation in environmental activities of KMUTT dormitory students, and 3) to compare the correlation between media exposure and participation in environmental activities of KMUTT dormitory students. The tool used for collecting data was questionnaire. The research findings revealed that dormitory students were mostly exposed to the environmental media via public relations boards for general media and KMUTT dormitory media. Dormitory students were daily exposed to media via websites on the internet and weekly for other media. Dormitory students participation in the environmental activities was at high level (x = 3.65) on an individual basis and was at medium level (x = 2.76) on a collective basis. Faculties did not correlate with the participation in environmental activities of dormitory students at the .01 statistical level and media exposure via various media correlated with participation in environmental activities of dormitory students at the .01 statistical level.

Keywords: Dormitary Students, Environmental Activities Media Exposure, Participation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
2504 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring

Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek

Abstract:

In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.

Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2503 The Statistical Significant of Adsorbents for Effective Zn (II) Ions Removal

Authors: Kiurski S. Jelena, Oros B. Ivana, Kecić S. Vesna, Kovačević M. Ilija, Aksentijević M. Snežana

Abstract:

The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d ≈ 15 mm). The obtained values of adsorption efficiency was subjected to the independent-samples t test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets (size d ≈ 15 mm) and activated carbon (½t½=6.909), natural zeolite (½t½=10.380), mixture of activated carbon and natural zeolite (½t½=9.865), bentonite (½t½=6.159), fired clay (½t½=6.641), fired clay pellets (size d ≈ 5 mm) (½t½=6.678), fired clay pellets (size d ≈ 8 mm) (½t½=3.422), respectively.

Keywords: Adsorbent, adsorption efficiency, statistical analysis, zinc ion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
2502 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: Autonomous strategies, distributed database systems, high priority, query optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
2501 A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

Authors: Hazem M. El-Bakry

Abstract:

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.

Keywords: Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
2500 An Intelligent Scheme Switching for MIMO Systems Using Fuzzy Logic Technique

Authors: Robert O. Abolade, Olumide O. Ajayi, Zacheaus K. Adeyemo, Solomon A. Adeniran

Abstract:

Link adaptation is an important strategy for achieving robust wireless multimedia communications based on quality of service (QoS) demand. Scheme switching in multiple-input multiple-output (MIMO) systems is an aspect of link adaptation, and it involves selecting among different MIMO transmission schemes or modes so as to adapt to the varying radio channel conditions for the purpose of achieving QoS delivery. However, finding the most appropriate switching method in MIMO links is still a challenge as existing methods are either computationally complex or not always accurate. This paper presents an intelligent switching method for the MIMO system consisting of two schemes - transmit diversity (TD) and spatial multiplexing (SM) - using fuzzy logic technique. In this method, two channel quality indicators (CQI) namely average received signal-to-noise ratio (RSNR) and received signal strength indicator (RSSI) are measured and are passed as inputs to the fuzzy logic system which then gives a decision – an inference. The switching decision of the fuzzy logic system is fed back to the transmitter to switch between the TD and SM schemes. Simulation results show that the proposed fuzzy logic – based switching technique outperforms conventional static switching technique in terms of bit error rate and spectral efficiency.

Keywords: Channel quality indicator, fuzzy logic, link adaptation, MIMO, spatial multiplexing, transmit diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
2499 Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks

Authors: Ashok Kumar, Vinod Kumar

Abstract:

Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.

Keywords: localization, range free, received signal strength, link quality indicator, Mamdani fuzzy logic inference, Sugeno fuzzy logic inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
2498 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
2497 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
2496 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: Ademola K. Aremu, Joseph. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: Efficiency, energy, exergy, heating, insolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
2495 Performance Improvements of DSP Applications on a Generic Reconfigurable Platform

Authors: Michalis D. Galanis, Gregory Dimitroulakos, Costas E. Goutis

Abstract:

Speedups from mapping four real-life DSP applications on an embedded system-on-chip that couples coarsegrained reconfigurable logic with an instruction-set processor are presented. The reconfigurable logic is realized by a 2-Dimensional Array of Processing Elements. A design flow for improving application-s performance is proposed. Critical software parts, called kernels, are accelerated on the Coarse-Grained Reconfigurable Array. The kernels are detected by profiling the source code. For mapping the detected kernels on the reconfigurable logic a prioritybased mapping algorithm has been developed. Two 4x4 array architectures, which differ in their interconnection structure among the Processing Elements, are considered. The experiments for eight different instances of a generic system show that important overall application speedups have been reported for the four applications. The performance improvements range from 1.86 to 3.67, with an average value of 2.53, compared with an all-software execution. These speedups are quite close to the maximum theoretical speedups imposed by Amdahl-s law.

Keywords: Reconfigurable computing, Coarse-grained reconfigurable array, Embedded systems, DSP, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
2494 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341