Search results for: Control rods design
6653 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.
Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13836652 Flagging Critical Components to Prevent Transient Faults in Real-Time Systems
Authors: Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega Sanchez
Abstract:
This paper proposes the use of metrics in design space exploration that highlight where in the structure of the model and at what point in the behaviour, prevention is needed against transient faults. Previous approaches to tackle transient faults focused on recovery after detection. Almost no research has been directed towards preventive measures. But in real-time systems, hard deadlines are performance requirements that absolutely must be met and a missed deadline constitutes an erroneous action and a possible system failure. This paper proposes the use of metrics to assess the system design to flag where transient faults may have significant impact. These tools then allow the design to be changed to minimize that impact, and they also flag where particular design techniques – such as coding of communications or memories – need to be applied in later stages of design.
Keywords: Criticality, Metrics, Real-Time Systems, Transient Faults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13416651 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation
Authors: A. Yanik, U. Aldemir
Abstract:
This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.
Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7656650 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation
Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus
Abstract:
This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25596649 Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L.- Pomel) in Tomato Crop
Authors: G. Disciglio, F. Lops, A. Carlucci, G. Gatta, A. Tarantino, E. Tarantino
Abstract:
Phelipanche ramosa is the most damaging obligate flowering parasitic weed on wide species of cultivated plants. The semi-arid regions of the world are considered the main centers of this parasitic plant that causes heavy infestation. This is due to its production of high numbers of seeds (up to 200,000) that remain viable for extended periods (up to 20 years). In this study, 13 treatments for the control of Phelipanche were carried out, which included agronomic, chemical, and biological treatments and the use of resistant plant methods. In 2014, a trial was performed at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy), on processing tomato (cv ‘Docet’) grown in pots filled with soil taken from a field that was heavily infested by P. ramosa). The tomato seedlings were transplanted on May 8, 2014, into a sandy-clay soil (USDA). A randomized block design with 3 replicates (pots) was adopted. During the growing cycle of the tomato, at 70, 75, 81 and 88 days after transplantation, the number of P. ramosa shoots emerged in each pot was determined. The tomato fruit were harvested on August 8, 2014, and the quantitative and qualitative parameters were determined. All of the data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc. Cary, NC, USA), and for comparisons of means (Tukey's tests). The data show that each treatment studied did not provide complete control against P. ramosa. However, the virulence of the attacks was mitigated by some of the treatments tried: radicon biostimulant, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone, and the resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments with each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.
Keywords: Control methods, Phelipanche ramosa, tomato crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30516648 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules
Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan
Abstract:
In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.
Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34726647 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures
Authors: J. Menčík
Abstract:
Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18156646 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15736645 Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces
Authors: Roozbeh Keshmiri, Alireza Mohamad Shahri
Abstract:
Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.Keywords: Fuzzy Logic Control, ABS, Anti lock BrakingSystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37446644 Design of Variable Fractional-Delay FIR Differentiators
Authors: Jong-Jy Shyu, Soo-Chang Pei, Min-Han Chang
Abstract:
In this paper, the least-squares design of variable fractional-delay (VFD) finite impulse response (FIR) digital differentiators is proposed. The used transfer function is formulated so that Farrow structure can be applied to realize the designed system. Also, the symmetric characteristics of filter coefficients are derived, which leads to the complexity reduction by saving almost a half of the number of coefficients. Moreover, all the elements of related vectors or matrices for the optimal process can be represented in closed forms, which make the design easier. Design example is also presented to illustrate the effectiveness of the proposed method.
Keywords: Differentiator, variable fractional-delay filter, FIR filter, least-squares method, Farrow structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14166643 Stator-Flux-Oriented Based Encoderless Direct Torque Control for Synchronous Reluctance Machines Using Sliding Mode Approach
Authors: J. Soltani, H. Abootorabi Zarchi, Gh. R. Arab Markadeh
Abstract:
In this paper a sliding-mode torque and flux control is designed for encoderless synchronous reluctance motor drive. The sliding-mode plus PI controllers are designed in the stator-flux field oriented reference frame which is able to track the mentioned reference signals with a minimum pulsations in the state condition. In addition, with these controllers a fast dynamic response is also achieved for the drive system. The proposed control scheme is robust subject to parameters variation except to stator resistance. To solve this problem a simple estimator is used for on-line detecting of this parameter. Moreover, the rotor position and speed are estimated by on-line obtaining of the stator-flux-space vector. The effectiveness and capability of the proposed control approach is verified by both the simulation and experimental results.Keywords: Synchronous Reluctance Motor, Direct Torque and Flux Control, Sliding Mode, Field-Oriented Frame, Encoderless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25786642 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor
Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel
Abstract:
This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.Keywords: IM, FOC, FLC, SMC, and FSMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28146641 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.
Keywords: Sliding mode control, bus model, air suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17716640 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.
Keywords: Adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11236639 Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot
Authors: Tawiwat V., Tosapolporn P., Kedit J.
Abstract:
This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop control is applied and the result of an example show the reasonable solution which can be applied to the controllable system.
Keywords: RRP robot, Optimal Control, Minimum Energy and Under Actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13006638 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities
Authors: Idil Kanter Otcu
Abstract:
Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.Keywords: Energy efficiency, landscape design, plant design, xeriscape landscape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18046637 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki
Abstract:
This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.
Keywords: Fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17326636 Frequency-Domain Design of Fractional-Order FIR Differentiators
Authors: Wei-Der Chang, Dai-Ming Chang, Eri-Wei Chiang, Chia-Hung Lin, Jian-Liung Chen
Abstract:
In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.Keywords: Fractional-order differentiator, FIR digital filter, Differential evolution algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22516635 A Discrete Choice Modeling Approach to Modular Systems Design
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.Keywords: Constrained discrete combinatorial choice, modular systems design, optimization problem, PC configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20206634 Optimization of CO2 Emissions and Cost for Composite Building Design with NSGA-II
Authors: Ji Hyeong Park, Ji Hye Jeon, Hyo Seon Park
Abstract:
Environmental pollution problems have been globally main concern in all fields including economy, society and culture into the 21st century. Beginning with the Kyoto Protocol, the reduction on the emissions of greenhouse gas such as CO2 and SOX has been a principal challenge of our day. As most buildings unlike durable goods in other industries have a characteristic and long life cycle, they consume energy in quantity and emit much CO2. Thus, for green building construction, more research is needed to reduce the CO2 emissions at each stage in the life cycle. However, recent studies are focused on the use and maintenance phase. Also, there is a lack of research on the initial design stage, especially the structure design. Therefore, in this study, we propose an optimal design plan considering CO2 emissions and cost in composite buildings simultaneously by applying to the structural design of actual building.Keywords: Multi-objective optimization, CO2 emissions, structural cost, encased composite structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21656633 The Application of Rhizophora Wood to Design: A Walking Stick for Elderly
Authors: Noppadon Sangwalpetch
Abstract:
The objective of this research is to use Rhizophora wood to design a walking stick for elderly. The research was conducted by studying the behavior and the type of walking sticks used by 70 elderly aged between 60-80 years in Pragnamdaeng Sub-District, Samudsongkram Province. Questionnaires were used to collect data which were calculated to find percentage, mean, and standard deviation. The results are as follows: 1) most elderly use walking sticks due to the Osteoarthritis of the knees. 2) Most elderly need to use walking sticks because the walking sticks help to balance their positioning and prevent from stumble. 3) Most elderly agree that Rhizophora wood is suitable to make a walking stick because of its strength and toughness. 4) The design of the walking stick should be fine and practical with comfortable handle and the tip of the stick must not be slippery.
Keywords: Elderly, Product design, Rhizophora wood, Walking Stick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20436632 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel
Authors: Zainul Huda, Muhammad Hani Ajani
Abstract:
The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.
Keywords: Thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77836631 A Virtual Learning Environment for Deaf Children: Design and Evaluation
Authors: Nicoletta Adamo-Villani
Abstract:
The object of this research is the design and evaluation of an immersive Virtual Learning Environment (VLE) for deaf children. Recently we have developed a prototype immersive VR game to teach sign language mathematics to deaf students age K- 4 [1] [2]. In this paper we describe a significant extension of the prototype application. The extension includes: (1) user-centered design and implementation of two additional interactive environments (a clock store and a bakery), and (2) user-centered evaluation including development of user tasks, expert panel-based evaluation, and formative evaluation. This paper is one of the few to focus on the importance of user-centered, iterative design in VR application development, and to describe a structured evaluation method.Keywords: 3D Animation, Virtual Reality, Virtual Learning Environments, User-Centered Design, User-centered Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22046630 Reformulations of Big Bang-Big Crunch Algorithm for Discrete Structural Design Optimization
Authors: O. Hasançebi, S. Kazemzadeh Azad
Abstract:
In the present study the efficiency of Big Bang-Big Crunch (BB-BC) algorithm is investigated in discrete structural design optimization. It is shown that a standard version of the BB-BC algorithm is sometimes unable to produce reasonable solutions to problems from discrete structural design optimization. Two reformulations of the algorithm, which are referred to as modified BB-BC (MBB-BC) and exponential BB-BC (EBB-BC), are introduced to enhance the capability of the standard algorithm in locating good solutions for steel truss and frame type structures, respectively. The performances of the proposed algorithms are experimented and compared to its standard version as well as some other algorithms over several practical design examples. In these examples, steel structures are sized for minimum weight subject to stress, stability and displacement limitations according to the provisions of AISC-ASD.Keywords: Structural optimization, discrete optimization, metaheuristics, big bang-big crunch (BB-BC) algorithm, design optimization of steel trusses and frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23906629 Safety Compliance of Substation Earthing Design
Authors: A. Hellany, M.Nagrial, M. Nassereddine, J. Rizk
Abstract:
As new challenges emerge in power electrical workplace safety, it is the responsibility of the systems designer to seek out new approaches and solutions that address them. Design decisions made today will impact cost, safety and serviceability of the installed systems for 40 or 50 years during the useful life for the owner. Studies have shown that this cost is an order of magnitude of 7 to 10 times the installed cost of the power distribution equipment. This paper reviews some aspects of earthing system design in power substation surrounded by residential houses. The electrical potential rise and split factors are discussed and a few recommendations are provided to achieve a safety voltage in the area beyond the boundary of the substation.Keywords: EPR, Split Factor, Earthing Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42696628 Design Systems and the Need for a Usability Method: Assessing the Fitness of Components and Interaction Patterns in Design Systems Using Atmosphere Methodology
Authors: P. Johansson, S. Mardh
Abstract:
The present study proposes a usability test method, Atmosphere, to assess the fitness of components and interaction patterns of design systems. The method covers the user’s perception of the components of the system, the efficiency of the logic of the interaction patterns, perceived ease of use as well as the user’s understanding of the intended outcome of interactions. These aspects are assessed by combining measures of first impression, visual affordance and expectancy. The method was applied to a design system developed for the design of an electronic health record system. The study was conducted involving 15 healthcare personnel. It could be concluded that the Atmosphere method provides tangible data that enable human-computer interaction practitioners to analyze and categorize components and patterns based on perceived usability, success rate of identifying interactive components and success rate of understanding components and interaction patterns intended outcome.
Keywords: atomic design, atmosphere methodology, design system, expectancy testing, first impression testing, usability testing, visual affordance testing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8546627 Design Resilient Building Strategies in Face of Climate Change
Authors: Yahya Alfraidi, Abdel Halim Boussabaine
Abstract:
Climate change confronts the built environment with many new challenges in the form of more severe and frequent hydrometeorological events. A series of strategies is proposed whereby the various aspects of buildings and their sites can be made more resilient to the effects of such events.
Keywords: Design resilience building, resilience strategies, climate change risks, design resilience aspects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31826626 Contributions to Design of Systems Actuated by Shape Memory Active Elements
Authors: Daniel Amariei, Calin O. Miclosina, Ion Vela, Marius Tufoi, Cornel Mituletu
Abstract:
Even it has been recognized that Shape Memory Alloys (SMA) have a significant potential for deployment actuators, the number of applications of SMA-based actuators to the present day is still quite small, due to the need of deep understanding of the thermo-mechanical behavior of SMA, causing an important need for a mathematical model able to describe all thermo-mechanical properties of SMA by relatively simple final set of constitutive equations. SMAs offer attractive potentials such as: reversible strains of several percent, generation of high recovery stresses and high power / weight ratios. The paper tries to provide an overview of the shape memory functions and a presentation of the designed and developed temperature control system used for a gripper actuated by two pairs of differential SMA active springs. An experimental setup was established, using electrical energy for actuator-s springs heating process. As for holding the temperature of the SMA springs at certain level for a long time was developed a control system in order to avoid the active elements overheating.Keywords: active element, actuator, model, Nitinol, prehension
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15366625 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5696624 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.
Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070