Search results for: statistical convergence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1588

Search results for: statistical convergence

538 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran

Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh

Abstract:

Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.

Keywords: Evapotranspiration, Hargreaves equation, FAOPenman method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
537 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
536 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: Ultra-wideband, propagation, line-of-sight, non-line-of-sight, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
535 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations

Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska

Abstract:

Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.

Keywords: Scaffoldings, health and safety at work, temperature, wind speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
534 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data

Authors: Sedigheh Mirzaei S., Debasis Sengupta

Abstract:

Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.

Keywords: Preece-Baines growth model, MCMC method, Mixed effect model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
533 Anticoagulatory Role of an Ergot Mesylate: Hydergine

Authors: Fareeha A., Irfan Z Qureshi

Abstract:

Thrombosis can be life threatening, necessitating therefore its instant treatment. Hydergine, a nootropic agent is used as a cognition enhancer in stroke patients but relatively little is known about its anti-thrombolytic effect. To investigate this aspect, in vivo and ex vivo experiments were designed and conducted. Three groups of rats were injected 1.5mg, 3.0mg and 4.5mg hydergine intraperitonealy with and without prior exposure to fresh plasma. Positive and negative controls were run in parallel. Animals were sacrificed after 1.5hrs and BT, CT, PT, INR, APTT, plasma calcium levels were estimated. For ex vivo analyses, each 1ml blood aspirated was exposed to 0.1mg, 0.2mg, 0.3mg dose of hydergine with parallel controls. Parameters analyzed were as above. Statistical analysis was through one-way ANOVA. Dunken-s and Tukey-s tests provided intra-group variance. BT, CT, PT, INR and APTT increased while calcium levels dropped significantly (P<0.05). Ex vivo, CT, PT and APTT were elevated while plasma calcium levels lowered significantly (P<0.05). Our study suggests that hydergine may act as a thrombolytic agent but warrants further studies to elucidate this role of ergot mesylates.

Keywords: Hydergine, Coagulation assays, plasma calcium, ergot mesylates, thrombosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
532 Base Change for Fisher Metrics: Case of the q−Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza O., Carlos A. Cadavid M., Juan C. Arango P.

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ = −1/2 , as does the family of usual Gaussian distributions. In the present paper, firstly we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ1, θ2; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the Inverse q−Gaussian distribution family (q < 3), as the family obtained by replacing the usual exponential function by the Tsallis q−exponential function in the expression for the Inverse Gaussian distribution, and observe that it supports two possible geometries, the Fisher and the q−Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q−Fisher geometry of the Inverse q−Gaussian distribution family, similar to the ones obtained in the case of the Inverse Gaussian distribution family.

Keywords: Base of Changes, Information Geometry, Inverse Gaussian distribution, Inverse q-Gaussian distribution, Statistical Manifolds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387
531 Integrated Marketing Communication to Influencing International Standard Energy Economy Car Buying Decision of Consumers in Bangkok

Authors: Pisit Potjanajaruwit

Abstract:

The objective of this research was to study the influence of Integrated Marketing Communication on Buying Decision of Consumers in Bangkok. A total of 397 respondents were collected from customers who drive in Bangkok. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The effect to the Buying Decision of Consumers in Bangkok to including sale promotion with the low interest and discount for an installment, selling by introducing and gave product information through sales persons, public relation by website, direct marketing by annual motor show and advertisement by television media.

Keywords: ECO Car, Integrated Marketing Communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3041
530 Identification of Aircraft Gas Turbine Engines Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
529 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
528 Unit Selection Algorithm Using Bi-grams Model For Corpus-Based Speech Synthesis

Authors: Mohamed Ali KAMMOUN, Ahmed Ben HAMIDA

Abstract:

In this paper, we present a novel statistical approach to corpus-based speech synthesis. Classically, phonetic information is defined and considered as acoustic reference to be respected. In this way, many studies were elaborated for acoustical unit classification. This type of classification allows separating units according to their symbolic characteristics. Indeed, target cost and concatenation cost were classically defined for unit selection. In Corpus-Based Speech Synthesis System, when using large text corpora, cost functions were limited to a juxtaposition of symbolic criteria and the acoustic information of units is not exploited in the definition of the target cost. In this manuscript, we token in our consideration the unit phonetic information corresponding to acoustic information. This would be realized by defining a probabilistic linguistic Bi-grams model basically used for unit selection. The selected units would be extracted from the English TIMIT corpora.

Keywords: Unit selection, Corpus-based Speech Synthesis, Bigram model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
527 Identification of Aircraft Gas Turbine Engine's Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
526 Probabilistic Characteristics of older PR Frames in the Mid-America Earthquake Region

Authors: Do-Hwan Kim, Roberto Leon

Abstract:

Probabilistic characteristics of seismic responses of the Partially Restrained connection rotation (PRCR) and panel zone deformation (PZD) installed in older steel moment frames were investigated in accordance with statistical inference in decision-making process. The 4, 6 and 8 story older steel moment frames with clip angle and T-stub connections were designed and analyzed using 2%/50yrs ground motions in four cities of the Mid-America earthquake region. The probability density function and cumulative distribution function of PRCR and PZD were determined by the goodness-of-fit tests based on probabilistic parameters measured from the results of the nonlinear time-history analyses. The obtained probabilistic parameters and distributions can be used to find out what performance level mainly PR connections and panel zones satisfy and how many PR connections and panel zones experience a serious damage under the Mid-America ground motions.

Keywords: Mid-America earthquake, Panel zone, PR connection, Probabilistic characteristics, seismic performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
525 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
524 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
523 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
522 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276
521 Virtual Learning Process Environment: Cohort Analytics for Learning and Learning Processes

Authors: Ayodeji Adesina, Derek Molloy

Abstract:

Traditional higher-education classrooms allow lecturers to observe students- behaviours and responses to a particular pedagogy during learning in a way that can influence changes to the pedagogical approach. Within current e-learning systems it is difficult to perform continuous analysis of the cohort-s behavioural tendency, making real-time pedagogical decisions difficult. This paper presents a Virtual Learning Process Environment (VLPE) based on the Business Process Management (BPM) conceptual framework. Within the VLPE, course designers can model various education pedagogies in the form of learning process workflows using an intuitive flow diagram interface. These diagrams are used to visually track the learning progresses of a cohort of students. This helps assess the effectiveness of the chosen pedagogy, providing the information required to improve course design. A case scenario of a cohort of students is presented and quantitative statistical analysis of their learning process performance is gathered and displayed in realtime using dashboards.

Keywords: Business process management, cohort analytics, learning processes, virtual learning environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
520 A Study of Visitors, on Service Quality, Satisfaction and Loyal in Ya Tam San Bikeway

Authors: Ching-hui Lin, Yen-Chieh Wen

Abstract:

The main purpose of this study is to analyze the feelings of tourists for the service quality of the bikeway. In addition, this study also analyzed the causal relationship between service quality and satisfaction to visitor-s lane loyalty. In this study, the Ya Tam San bikeway visitor-s subjects, using the designated convenience sampling carried out the survey, a total of 651 questionnaires were validly. Valid questionnaires after statistical analysis, the following findings: 1. Visitor-s lane highest quality of service project: the routes through the region weather pleasant. Lane "with health and sports," the highest satisfaction various factors of service quality and satisfaction, loyal between correlations exist. 4. Guided tours of bikeways, the quality of the environment, and modeling imagery can effectively predict visitor satisfaction. 5. Quality of bikeway, public facilities, guided tours, and modeling imagery can effectively predict visitor loyalty. According to the above results, the study not only makes recommendations to the government units and the bicycle industry, also asked the research direction for future researchers.

Keywords: Service quality, satisfaction, loyal, bikeway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
519 Theoretical Literature Review on Lack of Cardiorespiratory Fitness and Its Effects on Children

Authors: E. Abdi

Abstract:

The purpose of this theoretical literature review is to study the relevant academic literature on lack of cardiorespiratory fitness and its effects on children. The total of thirty eight relevant documents were identified and considered for this review which nineteen of those were original research articles published in peer reviewed journals. The other nineteen articles were statistical documents. This literature review is structured to examine 5 effects in deficiency of cardiorespiratory fitness in school aged children (A) Relative Age Effect (RAE), (B) Obesity, (C) Inadequate fitness level (D) Unhealthy life style, and (E) Academics. The categories provide a theoretical framework for future studies where results are driven from the literature review. The study discusses that regular physical fitness assists children and adolescents to develop healthy physical activity behaviors which can be sustained throughout adult life. Conclusion suggests that advocacy for increasing physical activity and decreasing sedentary behaviors at school and home are necessary.

Keywords: Cardiorespiratory, endurance, physical activity, physical fitness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
518 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset

Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo

Abstract:

Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.

Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
517 Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

Authors: K. Sudprasert, M. Precharattana, N. Nuttavut, D. Triampo, B. Pattanasiri, Y. Lenbury, W. Triampo

Abstract:

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

Keywords: Non-equilibrium, lattice gas, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
516 Passenger Flow Characteristics of Seoul Metropolitan Subway Network

Authors: Kang Won Lee, Jung Won Lee

Abstract:

Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.

Keywords: Betweenness centrality, correlation coefficient, power-law distribution, Korea traffic data base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
515 Quantifying and Adjusting the Effects of Publication Bias in Continuous Meta-Analysis

Authors: N.R.N. Idris

Abstract:

This study uses simulated meta-analysis to assess the effects of publication bias on meta-analysis estimates and to evaluate the efficacy of the trim and fill method in adjusting for these biases. The estimated effect sizes and the standard error were evaluated in terms of the statistical bias and the coverage probability. The results demonstrate that if publication bias is not adjusted it could lead to up to 40% bias in the treatment effect estimates. Utilization of the trim and fill method could reduce the bias in the overall estimate by more than half. The method is optimum in presence of moderate underlying bias but has minimal effects in presence of low and severe publication bias. Additionally, the trim and fill method improves the coverage probability by more than half when subjected to the same level of publication bias as those of the unadjusted data. The method however tends to produce false positive results and will incorrectly adjust the data for publication bias up to 45 % of the time. Nonetheless, the bias introduced into the estimates due to this adjustment is minimal

Keywords: Publication bias, Trim and Fill method, percentage relative bias, coverage probability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
514 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
513 Innovation Knowledge and Capability, Work Efficiency of Accountants and the Success of SME Registered in Nakorn Pathom Province

Authors: Autjira Songan, Supattra Kanchanopast

Abstract:

The objectives of this research were to compare the success of SME registered in Nakorn Pathom Province divided in personal data also to study the relations between the innovation knowledge and capability and the success of SME registered in Nakorn Pathom Province and to study the relations between the work efficiency and the success of SME registered in Nakorn Pathom Province. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences.The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. It also found that in terms of innovation knowledge and capability, there were two variables had an influence on the amount of innovation knowledge and capability, innovation evaluation which were physical characteristic and innovation process.

Keywords: ccountants, Innovation, Knowledge, Work Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
512 Validity and Reliability of Competency Assessment Implementation (CAI) Instrument Using Rasch Model

Authors: Nurfirdawati Muhamad Hanafi, Azmanirah Ab Rahman, Marina Ibrahim Mukhtar, Jamil Ahmad, Sarebah Warman

Abstract:

This study was conducted to generate empirical evidence on validity and reliability of the item of Competency Assessment Implementation (CAI) Instrument using Rasch Model for polythomous data aided by Winstep software version 3.68. The construct validity was examined by analyzing the point-measure correlation index (PTMEA), infit and outfit MNSQ values; meanwhile the reliability was examined by analyzing item reliability index. A survey technique was used as the major method with the CAI instrument on 156 teachers from vocational schools. The results have shown that the reliability of CAI Instrument items were between 0.80 and 0.98. PTMEA Correlation is in positive values, in which the item is able to distinguish between the ability of the respondent. Statistical data obtained show that out of 154 items, 12 items from the instrument suggested to be omitted. This study is hoped could bring a new direction to the process of data analysis in educational research.

Keywords: Competency Assessment, Reliability, Validity, Item Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831
511 Automatic Vehicle Identification by Plate Recognition

Authors: Serkan Ozbay, Ergun Ercelebi

Abstract:

Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.

Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7586
510 Mining Image Features in an Automatic Two-Dimensional Shape Recognition System

Authors: R. A. Salam, M.A. Rodrigues

Abstract:

The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.

Keywords: Image mining, feature selection, shape recognition, peak measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
509 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053