Search results for: Operators training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1221

Search results for: Operators training

171 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
170 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Keywords: artificial neural networks, aquaculture, forced circulation hot water system,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
169 A Profile of Recent Upsurge of Brucellosis of Veterinary Health Care Workers Engaged in Brucella Vaccination Program in West Bengal, India

Authors: Satadal Das, Parthasarathi Sengupta

Abstract:

With millions of livestock wealth in India including cattle, and buffaloes, the National Animal Disease Control Program targeted a massive Brucella vaccination program. As a part of it in the state of West Bengal Veterinary healthcare assistants participated in the program in 2021. The aim of this study was to elucidate the burden of brucellosis in those healthcare assistants and to pinpoint the main causes of such infection. We contacted the healthcare assistants to find out whether they were infected during the vaccination program. Our findings indicated many Veterinary healthcare assistants who participated in the program developed symptoms and signs suggestive of brucellosis. Laboratory tests indicated many confirmed Brucellosis cases. However, this may not include many asymptomatic cases. Detailed analysis revealed that in most of them there was a history of needle prick injury about a month back during the vaccination program, which was mainly due to ferocious or disturbed animals. Few also complained that they were not properly trained or proper personal protective types of equipment were not provided. All of them were treated in referral hospitals following a standard protocol of the Government Health Department and now they are followed up. Thus we conclude that proper care during the vaccination of animals should be followed, prophylactic treatment for needle prick injuries should be given, and training and supply of personal protective equipment should be monitored.

Keywords: Occupational brucellosis, needle prick injury, brucella vaccination, personal protective equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
168 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
167 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network

Authors: Zukisa Nante, Wang Zenghui

Abstract:

Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.

Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
166 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks

Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar

Abstract:

Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.

Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
165 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
164 The Effectiveness of Cognitive Behavioural Intervention in Alleviating Social Avoidance for Blind Students

Authors: Mohamed M. Elsherbiny

Abstract:

Social Avoidance is one of the most important problems that face a good number of disabled students. It results from the negative attitudes of non-disabled students, teachers and others. Some of the past research has shown that non-disabled individuals hold negative attitudes toward persons with disabilities. The present study aims to alleviate Social Avoidance by applying the Cognitive Behavioral Intervention. 24 Blind students aged 19–24 (university students) were randomly chosen we compared an experimental group (consisted of 12 students) who went through the intervention program, with a control group (12 students also) who did not go through such intervention. We used the Social Avoidance and Distress Scale (SADS) to assess social anxiety and distress behavior. The author used many techniques of cognitive behavioral intervention such as modeling, cognitive restructuring, extension, contingency contracts, selfmonitoring, assertiveness training, role play, encouragement and others. Statistically, T-test was employed to test the research hypothesis. Result showed that there is a significance difference between the experimental group and the control group after the intervention and also at the follow up stages of the Social Avoidance and Distress Scale. Also for the experimental group, there is a significance difference before the intervention and the follow up stages for the scale. Results showed that, there is a decrease in social avoidance. Accordingly, cognitive behavioral intervention program was successful in decreasing social avoidance for blind students.

Keywords: Social avoidance, cognitive behavioral intervention, blind disability, disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
163 Eradication of Mental Illness through Buddhism

Authors: Deshar Bashu Dev

Abstract:

In this modern age, most people in developed and developing countries are affected by mental illness. There are many mental illnesses, and their differing symptoms impact peoples’ lives in different ways. These illnesses affect the way people think and feel, as well as how they behave with others. Mental illness results from compound interactions between the mind, body, and environment. New technologies and sciences make the world a better place. These technologies are becoming smarter and are being developed every day to help make daily life easier However, people suffer from mental illness in every part of the world. The philosophy propounded by the Buddha, Buddhism, teaches that all life is connected, from the microcosm to macrocosm. In the 2,500 years that elapsed since the death of the Buddha, his disciples have spread his teachings and developed sophisticated psycho-therapeutic methodologies. We can find many examples in Buddhist texts and in the modern age where Buddhist philosophy modern science could not solve. The Noble Eightfold Path, which is one of the main philosophies of Buddhism; it eradicates hatred and ill will and cultivates good deeds, kindness, and compassion. Buddhism, as a practice of dialectic conversation and mindfulness training, is full of rich therapeutic tools that the mental health community has adopted to help people. Similarly, Buddhist meditation is very necessary; it purifies thoughts and avoids unnecessary thinking. This research aims to study different causes of mental illness; analyzes the different approaches to eradicate mental illness problems and provides conclusions and recommendations present solutions through Buddhism in this modern age.

Keywords: Mental illness, Buddhism, mindfulness, Buddhist practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
162 An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program

Authors: Hossein Heidari Tabrizi, Azizeh Chalak

Abstract:

The present study examined how translation teachers develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.

Keywords: Iranian universities, students’ academic translations, translation final tests, undergraduate translation programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
161 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton

Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna

Abstract:

A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.

Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
160 Reasons for Doing Job outside Household and Difficulties Faced by the Working Women of Bangladesh

Authors: Md. Sayeed Akhter, Md. Akhtar Hossain Mazumder, Syeda Afreena Mamun

Abstract:

Bangladesh is a patriarchal and male dominated country. Traditional, cultural, social, and religious values and practices have reinforced the lower status of women accorded to them in society and have limited their opportunities for education, technical and vocational training, and involvement with earning activities outside their households. After independence numbers of women are doing job outside their households. This study attempts to find out the reasons of engaging in earning activities outside households and difficulties faced by upper and lower class working women in Bangladesh. To explore the objectives and research questions of the study descriptive techniques had been used. Survey was conducted among the women who were working in Rajshahi city of Bangladesh and face-to-face interviews were conducted to collect data. Findings of the study illustrates that most of the upper class working women engaged into job because they wanted to utilized their education and to bring solvency in the family, and they spend their income for meeting the needs of all the members of the family. On the other hand, most of the lower class working women involved into earning activities outside their households because they want to bring solvency in their families and spend their income on household expenditure. Both classes became tensed for their children because they had to stay at their working place for long time. Therefore, day care center should be established besides their working place for their children.

Keywords: Working Women, Reasons for Doing Jobs, Working Environment, Difficulties Faced.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
159 The Effect of Sport Specific Exercises on the Visual Skills of Rugby Players

Authors: P.J. Du Toit, P. Janse Van Vuuren , S. Le Roux , E. Henning, M. Kleynhans, H.C. Terblanche, D. Crafford, C. Grobbelaar, P.S. Wood, C.C. Grant, L. Fletcher

Abstract:

Introduction: Visual performance is an important factor in sport excellence. Visual involvement in a sport varies according to environmental demands associated with that sport. These environmental demands are matched by a task specific motor response. The purpose of this study was to determine if sport specific exercises will improve the visual performance of male rugby players, in order to achieve maximal results on the sports field. Materials & Methods: Twenty six adult male rugby players, aged 16-22, were chosen as subjects. In order to evaluate the effect of sport specific exercises on visual skills, a pre-test - post-test experimental group design was adopted for the study. Results: Significant differences (p≤0.05) were seen in the focussing, tracking, vergence, sequencing, eye-hand coordination and visualisation components Discussion & Conclusions: Sport specific exercises improved visual skills in rugby players which may provide them with an advantage over their opponents. This study suggests that these training programs and participation in regular on-line EyeDrills sports vision exercises (www.eyedrills.co.za) aimed at improving the athlete-s visual coordination, concentration, focus, hand-eye co-ordination, anticipation and motor response should be incorpotated in the rugby players exercise regime.

Keywords: Rugby players, sport specific exercises, visual skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
158 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
157 Quality Determinants of Client Satisfaction: A Case Study of Australian Consulting Engineers, Sydney, Australia

Authors: Elham S. Hasham, Anthony S. Hasham

Abstract:

The construction industry is one of Australia’s fastest growing industries and its success is a result of a firm’s client satisfaction with focus on product determinants such as price and quality. Ensuring quality at every phase is a must and building rapport with the client will go a long way. To capitalize on the growing demand for Engineering Consulting Firms (ECFs), it is imperative to stress the implication of customer satisfaction and excellence in standards and performance. Consequently, the emphasis should be on improving employee skills through various training provisions. Clients seek consistency and thus expect that all services should be similar in respect to quality and the ability of the service to meet their needs. This calls for empowerment and comfortable work conditions to motivate employees and give them incentive to deliver quality and excellent output. The methodology utilized is triangulation - a combination of both quantitative and qualitative research. The case study - Australian Consulting Engineers (ACE) - was established in Australia in 1995 and has operations throughout Australia, the Philippines, Europe, UAE, KSA, and with a branch in Lebanon. ACE is affiliated with key agencies and support organizations in the engineering industry with International Organization for Standardization (ISO) certifications in Safety and Quality Management. The objective of this study, conducted in Australia, is significant as it sheds light on employee motivation and client satisfaction as imperative determinants of the success of an organization.

Keywords: Organizational behaviour, leadership, satisfaction, motivation, quality service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46
156 Selecting Negative Examples for Protein-Protein Interaction

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

Proteomics is one of the largest areas of research for bioinformatics and medical science. An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. Predicting Protein-Protein Interaction (PPI) is one of the crucial and decisive problems in current research. Genomic data offer a great opportunity and at the same time a lot of challenges for the identification of these interactions. Many methods have already been proposed in this regard. In case of in-silico identification, most of the methods require both positive and negative examples of protein interaction and the perfection of these examples are very much crucial for the final prediction accuracy. Positive examples are relatively easy to obtain from well known databases. But the generation of negative examples is not a trivial task. Current PPI identification methods generate negative examples based on some assumptions, which are likely to affect their prediction accuracy. Hence, if more reliable negative examples are used, the PPI prediction methods may achieve even more accuracy. Focusing on this issue, a graph based negative example generation method is proposed, which is simple and more accurate than the existing approaches. An interaction graph of the protein sequences is created. The basic assumption is that the longer the shortest path between two protein-sequences in the interaction graph, the less is the possibility of their interaction. A well established PPI detection algorithm is employed with our negative examples and in most cases it increases the accuracy more than 10% in comparison with the negative pair selection method in that paper.

Keywords: Interaction graph, Negative training data, Protein-Protein interaction, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
155 Knowledge of Operation Rooms’ Staff Toward Sources, Prevention and Control of Fires at Governmental Hospitals in Sana'a, Yemen

Authors: A. Ahmed Haza’a, M. Ali Odhah, S. Ahmed Al-Ahdal, A. Saleh Al-Jaradi, G. Ghaleb Alrubaiee

Abstract:

Patient safety in hospitals is an essential professional indicator that should be noticed. The threat of fires is potentially the most dangerous risk that could harm patients and personnel. The aim of the study is to assess the knowledge of operating room (OR) staff toward prevention and control sources of fires. Data collection was done between March 1 and March 30, 2022. A descriptive cross-sectional study was conducted. The sample of the study consisted of 89 OR staff from different governmental hospitals. Convenient sampling was applied to select the sample size. Official approvals were obtained from selected settings for start collection data. Data were collected using a close-ended questionnaire and tested for knowledge. This study was conducted in four governmental hospitals in Sana'a, Yemen. Most of the OR staff were male. Of these, 50.6% of them were operation technician professionals. More than two-thirds of OR staff have less than ten years of experience; 93% of OR staff had inadequate knowledge of sources of fires, and inadequate knowledge toward control and prevention of fires (73%, 79.8%), respectively; 77.5% of OR staff had inadequate knowledge of prevention and control sources of fires. The study concluded that most of OR staff had inadequate knowledge of sources, controls, and prevention of fires, while 22.5% of them had adequate knowledge of prevention and control sources of fires. We recommended the implementation of training programs toward sources, controls, and prevention of fires or related workshops in their educational planning for OR staff of hospitals.

Keywords: Staff, fire source, operation room safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183
154 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem

Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez

Abstract:

Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.

Keywords: Biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
153 The Effect of Cooperation Teaching Method on Learning of Students in Primary Schools

Authors: Fereshteh Afkari, Davood Bagheri

Abstract:

The effect of teaching method on learning assistance Dunn Review .The study, to compare the effects of collaboration on teaching mathematics learning courses, including writing, science, experimental girl students by other methods of teaching basic first paid and the amount of learning students methods have been trained to cooperate with other students with other traditional methods have been trained to compare. The survey on 100 students in Tehran that using random sampling ¬ cluster of girl students between the first primary selections was performed. Considering the topic of semi-experimental research methods used to practice the necessary information by questionnaire, examination questions by the researcher, in collaboration with teachers and view authority in this field and related courses that teach these must have been collected. Research samples to test and control groups were divided. Experimental group and control group collaboration using traditional methods of mathematics courses, including writing and experimental sciences were trained. Research results using statistical methods T is obtained in two independent groups show that, through training assistance will lead to positive results and student learning in comparison with traditional methods, will increase also led to collaboration methods increase skills to solve math lesson practice, better understanding and increased skill level of students in practical lessons such as science and has been writing.

Keywords: method of teaching, learning, collaboration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
152 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
151 Communication Styles of Business Students: A Comparison of Four National Cultures

Authors: Tiina Brandt, Isaac Wanasika

Abstract:

Culturally diverse global companies need to understand cultural differences between leaders and employees from different backgrounds. Communication is culturally contingent and has a significant impact on effective execution of leadership goals. The awareness of cultural variations related to communication and interactions will help leaders modify their own behavior, and consequently improve the execution of goals and avoid unnecessary faux pas. Our focus is on young adults that have experienced cultural integration, culturally diverse surroundings in schools and universities, and cultural travels. Our central research problem is to understand the impact of different national cultures on communication. We focus on four countries with distinct national cultures and spatial distribution. The countries are Finland, Indonesia, Russia and USA. Our sample is based on business students (n = 225) from various backgrounds in the four countries. Their responses of communication and leadership styles were analyzed using ANOVA and post-hoc test. Results indicate that culture impacts on communication behavior. Even young culturally-exposed adults with cultural awareness and experience demonstrate cultural differences in their behavior. Apparently, culture is a deeply seated trait that cannot be completely neutralized by environmental variables. Our study offers valuable input for leadership training programs and for expatriates when recognizing specific differences on leaders’ behavior due to culture.

Keywords: Culture, communication, Finland, Indonesia, Russia, USA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
150 Construction 4.0: The Future of the Construction Industry in South Africa

Authors: Temidayo. O. Osunsanmi, Clinton Aigbavboa, Ayodeji Oke

Abstract:

The construction industry is a renowned latecomer to the efficiency offered by the adoption of information technology. Whereas, the banking, manufacturing, retailing industries have keyed into the future by using digitization and information technology as a new approach for ensuring competitive gain and efficiency. The construction industry has yet to fully realize similar benefits because the adoption of ICT is still at the infancy stage with a major concentration on the use of software. Thus, this study evaluates the awareness and readiness of construction professionals towards embracing a full digitalization of the construction industry using construction 4.0. The term ‘construction 4.0’ was coined from the industry 4.0 concept which is regarded as the fourth industrial revolution that originated from Germany. A questionnaire was utilized for sourcing data distributed to practicing construction professionals through a convenience sampling method. Using SPSS v24, the hypotheses posed were tested with the Mann Whitney test. The result revealed that there are no differences between the consulting and contracting organizations on the readiness for adopting construction 4.0 concepts in the construction industry. Using factor analysis, the study discovers that adopting construction 4.0 will improve the performance of the construction industry regarding cost and time savings and also create sustainable buildings. In conclusion, the study determined that construction professionals have a low awareness towards construction 4.0 concepts. The study recommends an increase in awareness of construction 4.0 concepts through seminars, workshops and training, while construction professionals should take hold of the benefits of adopting construction 4.0 concepts. The study contributes to the roadmap for the implementation of construction industry 4.0 concepts in the South African construction industry.

Keywords: Building information technology, Construction 4.0, Industry 4.0, Smart Site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5819
149 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
148 Pilot Study on the Impact of VLE on Mathematical Concepts Acquisition within Secondary Education in England

Authors: Aaron A. R. Nwabude

Abstract:

The research investigates the “impact of VLE on mathematical concepts acquisition of the special education needs (SENs) students at KS4 secondary education sector" in England. The overall aim of the study is to establish possible areas of difficulties to approach for above or below knowledge standard requirements for KS4 students in the acquisition and validation of basic mathematical concepts. A teaching period, in which virtual learning environment (Fronter) was used to emphasise different mathematical perception and symbolic representation was carried out and task based survey conducted to 20 special education needs students [14 actually took part]. The result shows that students were able to process information and consider images, objects and numbers within the VLE at early stages of acquisition process. They were also able to carry out perceptual tasks but with limiting process of different quotient, thus they need teacher-s guidance to connect them to symbolic representations and sometimes coach them through. The pilot study further indicates that VLE curriculum approaches for students were minutely aligned with mathematics teaching which does not emphasise the integration of VLE into the existing curriculum and current teaching practice. There was also poor alignment of vision regarding the use of VLE in realisation of the objectives of teaching mathematics by the management. On the part of teacher training, not much was done to develop teacher-s skills in the technical and pedagogical aspects of VLE that is in-use at the school. The classroom observation confirmed teaching practice will find a reliance on VLE as an enhancer of mathematical skills, providing interaction and personalisation of learning to SEN students.

Keywords: VLE, Mathematical Concepts Acquisition, PilotStudy, SENs, KS4, Education, Teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
147 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: Energy efficiency, landscape design, plant design, xeriscape landscape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
146 Text-independent Speaker Identification Based on MAP Channel Compensation and Pitch-dependent Features

Authors: Jiqing Han, Rongchun Gao

Abstract:

One major source of performance decline in speaker recognition system is channel mismatch between training and testing. This paper focuses on improving channel robustness of speaker recognition system in two aspects of channel compensation technique and channel robust features. The system is text-independent speaker identification system based on two-stage recognition. In the aspect of channel compensation technique, this paper applies MAP (Maximum A Posterior Probability) channel compensation technique, which was used in speech recognition, to speaker recognition system. In the aspect of channel robust features, this paper introduces pitch-dependent features and pitch-dependent speaker model for the second stage recognition. Based on the first stage recognition to testing speech using GMM (Gaussian Mixture Model), the system uses GMM scores to decide if it needs to be recognized again. If it needs to, the system selects a few speakers from all of the speakers who participate in the first stage recognition for the second stage recognition. For each selected speaker, the system obtains 3 pitch-dependent results from his pitch-dependent speaker model, and then uses ANN (Artificial Neural Network) to unite the 3 pitch-dependent results and 1 GMM score for getting a fused result. The system makes the second stage recognition based on these fused results. The experiments show that the correct rate of two-stage recognition system based on MAP channel compensation technique and pitch-dependent features is 41.7% better than the baseline system for closed-set test.

Keywords: Channel Compensation, Channel Robustness, MAP, Speaker Identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
145 A Robotic “Puppet Master” Application to ASD Therapeutic Support

Authors: Sophie Sakka, Rénald Gaboriau

Abstract:

This paper describes a preliminary work aimed at setting a therapeutic support for autistic teenagers using three humanoid robots NAO shared by ASD (Autism Spectrum Disorder) subjects. The studied population had attended successfully a first year program, and were observed with a second year program using the robots. This paper focuses on the content and the effects of the second year program. The approach is based on a master puppet concept: the subjects program the robots, and use them as an extension for communication. Twenty sessions were organized, alternating ten preparatory sessions and ten robotics programming sessions. During the preparatory sessions, the subjects write a story to be played by the robots. During the robot programming sessions, the subjects program the motions to be realized to make the robot tell the story. The program was concluded by a public performance. The experiment involves five ASD teenagers aged 12-15, who had all attended the first year robotics training. As a result, a progress in voluntary and organized communication skills of the five subjects was observed, leading to improvements in social organization, focus, voluntary communication, programming, reading and writing abilities. The changes observed in the subjects general behavior took place in a short time, and could be observed from one robotics session to the next one. The approach allowed the subjects to draw the limits of their body with respect to the environment, and therefore helped them confronting the world with less anxiety.

Keywords: Autism spectrum disorder, robot, therapeutic support, rob’autism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
144 The Role of Chemerin and Myostatin after Physical Activity

Authors: M. J. Pourvaghar, M. E. Bahram

Abstract:

Obesity and overweight is one of the most common metabolic disorders in industrialized countries and in developing countries. One consequence of pathological obesity is cardiovascular disease and metabolic syndrome. Chemerin is an adipocyne that plays a role in the regulation of the adipocyte function and the metabolism of glucose in the liver and musculoskeletal system. Most likely, chemerin is involved in obesity-related disorders such as type 2 diabetes and cardiovascular disease. Aerobic exercises reduce the level of chemerin and cause macrophage penetration into fat cells and inflammatory factors. Several efforts have been made to clarify the cellular and molecular mechanisms of hypertrophy and muscular atrophy. Myostatin, a new member of the TGF-β family, is a transforming growth factor β that its expression negatively regulates the growth of the skeletal muscle; and the increase of this hormone has been observed in conditions of muscular atrophy. While in response to muscle overload, its levels decrease after the atrophy period, TGF-β is the most important cytokine in the development of skeletal muscle. Myostatin plays an important role in muscle control, and animal and human studies show a negative role of myostatin in the growth of skeletal muscle. Separation of myostatin from Golgi begins on the ninth day of the onset period and continues until birth at all times of muscle growth. Higher levels of myostatin are found in obese people. Resistance training for 10 weeks could reduce levels of plasma myostatin.

Keywords: Chemerin, myostatin, obesity, physical activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
143 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
142 Healthcare Waste Management Practices in Bangladesh: A Case Study in Dhaka City, Bangladesh

Authors: H. M. Nuralam, Z. Xiao-lan, B. K. Dubey, D. Wen-Chuan

Abstract:

Healthcare waste (HCW) is one of the major concerns in environmental issues due to its infectious and hazardous nature that is requires specific treatment and systematic management prior to final disposal. This study aimed to assess HCW management system in Dhaka City (DC), Bangladesh, by investigating the present practices implemented by the city. In this study, five different healthcare establishments were selected in DC. Field visits and interviews with health personnel and staff who are concerned with the waste management were conducted. The information was gathered through questionnaire focus on the different aspect of HCW management like, waste segregation and collection, storage and transport, awareness as well. The results showed that a total of 7,215 kg/day (7.2 ton/day) of waste were generated, of which 79.36% (5.6 ton/day) was non-hazardous waste and 20.6% (1.5 ton/day) was hazardous waste. The rate of waste generation in these healthcare establishments (HCEs) was 2.6 kg/bed/day. There was no appropriate and systematic management of HCWs except at few private HCEs that segregate their hazardous waste. All the surveyed HCEs dumped their HCW together with the municipal waste, and some staff members were also found to be engaged in improper handling of the generated waste. Furthermore, the used sharp instruments, saline bags, blood bags and test tubes were collected for resale or reuse. Nevertheless, the lack of awareness, appropriate policy, regulation and willingness to act, were responsible for the improper management of HCW in DC. There was lack of practical training of concerned healthcare to handle the waste properly, while the nurses and staff were found to be aware of the health impacts of HCW.

Keywords: Awareness, disposal, Dhaka City, healthcare waste management, waste generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528