Search results for: six-phase induction machine.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1459

Search results for: six-phase induction machine.

439 Design of Permanent Magnet Machines with Different Rotor Type

Authors: Tayfun Gundogdu, Guven Komurgoz

Abstract:

This paper presents design, analysis and comparison of the different rotor type permanent magnet machines. The presented machines are designed as having same geometrical dimensions and same materials for comparison. The main machine parameters of interior and exterior rotor type machines including eddy current effect, torque-speed characteristics and magnetic analysis are investigated using MAXWELL program. With this program, the components of the permanent magnet machines can be calculated with high accuracy. Six types of Permanent machines are compared with respect to their topology, size, magnetic field, air gap flux, voltage, torque, loss and efficiency. The analysis results demonstrate the effectiveness of the proposed machines design methodology. We believe that, this study will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the PM (Permanent magnet) machines which have different rotor structure.

Keywords: Motor design, Permanent Magnet, Finite-Elementmethod.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6098
438 Features for Measuring Credibility on Facebook Information

Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan

Abstract:

Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.

Keywords: Facebook, social media, credibility measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3669
437 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153
436 Paradigms Shift in Sport Sciences: Body's focus

Authors: Michele V. Carbinatto, Wagner Wey Moreira, Myrian Nunomura; Mariana H. C. Tsukamoto, VilmaLeni Nista-Piccolo

Abstract:

Sports Sciences has been historically supported by the positivism idea of science, especially by the mechanistic/reductionist and becomes a field that views experimentation and measurement as the mayor research domains. The disposition to simplify nature and the world by parts has fragmented and reduced the idea of bodyathletes as machine. In this paper we intent to re-think this perception lined by Complexity Theory. We come with the idea of athletes as a reflexive and active being (corporeity-body). Therefore, the construction of a training that considers the cultural, biological, psychological elements regarding the experience of the human corporal movements in a circumspect and responsible way could bring better chances of accomplishment. In the end, we hope to help coaches understand the intrinsic complexity of the body they are training, how better deal with it, and, in the field of a deep globalization among the different types of knowledge, to respect and accepted the peculiarities of knowledge that comprise this area.

Keywords: Sport science, body, complexity theory, corporeity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
435 Multimachine Power System Stabilizers Design Using PSO Algorithm

Authors: H. Shayeghi, A. Safari, H. A. Shayanfar

Abstract:

In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.

Keywords: PSS Design, Particle Swarm Optimization, Dynamic Stability, Multiobjective Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
434 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set

Authors: Andreas Theissler, Ian Dear

Abstract:

The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter  of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.

Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
433 Action Recognition in Video Sequences using a Mealy Machine

Authors: L. Rodriguez-Benitez, J. Moreno-Garcia, J.J. Castro-Schez, C. Solana, L. Jimenez

Abstract:

In this paper the use of sequential machines for recognizing actions taken by the objects detected by a general tracking algorithm is proposed. The system may deal with the uncertainty inherent in medium-level vision data. For this purpose, fuzzification of input data is performed. Besides, this transformation allows to manage data independently of the tracking application selected and enables adding characteristics of the analyzed scenario. The representation of actions by means of an automaton and the generation of the input symbols for finite automaton depending on the object and action compared are described. The output of the comparison process between an object and an action is a numerical value that represents the membership of the object to the action. This value is computed depending on how similar the object and the action are. The work concludes with the application of the proposed technique to identify the behavior of vehicles in road traffic scenes.

Keywords: Approximate reasoning, finite state machines, video analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
432 A Review: Comparative Study of Diverse Collection of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

There have been a lot of efforts and researches undertaken in developing efficient tools for performing several tasks in data mining. Due to the massive amount of information embedded in huge data warehouses maintained in several domains, the extraction of meaningful pattern is no longer feasible. This issue turns to be more obligatory for developing several tools in data mining. Furthermore the major aspire of data mining software is to build a resourceful predictive or descriptive model for handling large amount of information more efficiently and user friendly. Data mining mainly contracts with excessive collection of data that inflicts huge rigorous computational constraints. These out coming challenges lead to the emergence of powerful data mining technologies. In this survey a diverse collection of data mining tools are exemplified and also contrasted with the salient features and performance behavior of each tool.

Keywords: Business Analytics, Data Mining, Data Analysis, Machine Learning, Text Mining, Predictive Analytics, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364
431 Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

Authors: Ganesh Kothapalli, Mohammed Y. Hassan

Abstract:

The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.

Keywords: excavator, fuzzy control, hydraulics, mining, type-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
430 Performance Analysis of Parallel Client-Server Model Versus Parallel Mobile Agent Model

Authors: K. B. Manwade, G. A. Patil

Abstract:

Mobile agent has motivated the creation of a new methodology for parallel computing. We introduce a methodology for the creation of parallel applications on the network. The proposed Mobile-Agent parallel processing framework uses multiple Javamobile Agents. Each mobile agent can travel to the specified machine in the network to perform its tasks. We also introduce the concept of master agent, which is Java object capable of implementing a particular task of the target application. Master agent is dynamically assigns the task to mobile agents. We have developed and tested a prototype application: Mobile Agent Based Parallel Computing. Boosted by the inherited benefits of using Java and Mobile Agents, our proposed methodology breaks the barriers between the environments, and could potentially exploit in a parallel manner all the available computational resources on the network. This paper elaborates performance issues of a mobile agent for parallel computing.

Keywords: Parallel Computing, Mobile Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
429 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Authors: Brigitte Rafael, Stefan M. Oertl

Abstract:

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
428 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
427 Multi-Agent Systems for Intelligent Clustering

Authors: Jung-Eun Park, Kyung-Whan Oh

Abstract:

Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.

Keywords: Intelligent Clustering, Multi-Agent System, PCA, SOM, VC(Variance Criterion)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
426 Instability Problem of Turbo-Machines with Radial Distortion Problems

Authors: Yasuo Obikane, Sofiane Khelladi

Abstract:

In the upstream we place a piece of ring and rotate it with 83Hz, 166Hz, 333Hz,and 666H to find the effect of the periodic distortion.In the experiment this type of the perturbation will not allow since the mechanical failure of any parts of the equipment in the upstream will destroy the blade system. This type of study will be only possible by CFD. We use two pumps NS32 (ENSAM) and three blades pump (Tamagawa Univ). The benchmark computations were performed without perturbation parts, and confirm the computational results well agreement in head-flow rate. We obtained the pressure fluctuation growth rate that is representing the global instability of the turbo-system. The fluctuating torque components were 0.01Nm(5000rpm), 0.1Nm(10000rmp), 0.04Nm(20000rmp), 0.15Nm( 40000rmp) respectively. Only for 10000rpm(166Hz) the output toque was random, and it implies that it creates unsteady flow by separations on the blades, and will reduce the pressure loss significantly

Keywords: inlet distorsion, perturbation, turbo-machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
425 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

Authors: Vinod Kumar, Jatinder Kumar

Abstract:

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Keywords: Stress, MRR, Flow, Ultrasonic Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
424 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
423 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
422 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: Retrieval, generative, deep learning, response generation, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
421 Computer Vision Applied to Flower, Fruit and Vegetable Processing

Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia

Abstract:

This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.

Keywords: Image processing, Vision system, Automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323
420 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
419 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez

Abstract:

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Keywords: Flow-shop scheduling problem, makespan, Petri nets, state equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
418 Developing a Research Culture in the Faculty of Engineering and Information Technology at the Central University of Technology, Free State: Implications for Knowledge Management

Authors: Mpho A. Mbeo, Patient Rambe

Abstract:

The 13th year of the Central University of Technology, Free State’s (CUT) transition from a vocational and professional training orientation institution (i.e. a technikon) into a university with a strong research focus has neither been a smooth nor an easy one. At the heart of this transition was the need to transform the psychological faculties of academic and research staffs compliment who were accustomed to training graduates for industrial placement. The lack of a research culture that fully embraces the strong solid ethos of conducting cutting-edge research needs to be addressed. The induction and socialisation of academic staff into the development and execution of cutting-edge research also required the provision of research support and the creation of a conducive academic environment for research, both for emerging and non-research active academics. Drawing on ten cases, consisting of four heads of departments, three seasoned researchers, and three novice researchers, this study explores the challenges faced in establishing a strong research culture at the university. Furthermore, it gives an account of the extent to which the current research interventions have addressed the perceivably “missing research culture”, and the implications of these interventions for knowledge management. Evidence suggests that the capability of an ideal institutional research environment, consisting of mentorship of novice researchers by seasoned researchers, balanced effort into teaching and research responsibilities, should be supported by strong research-oriented leadership. Furthermore, recruitment of research passionate staff, adoption of a salary structure that encourages the retention of excellent scholars should be matched by a coherent research incentive culture to growth research publication outputs. This is critical for building new knowledge and entrenching knowledge management founded on communities of practice and scholarly networking through the documentation and communication of research findings. The study concludes that the multiple policy documents set for the different domains of research may be creating pressure on researchers to engage research activities and increase output at the expense of research quality.

Keywords: Central University of Technology, performance, publication, research culture, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330
417 Automata Theory Approach for Solving Frequent Pattern Discovery Problems

Authors: Renáta Iváncsy, István Vajk

Abstract:

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
416 Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

Authors: Andras Szekrenyes

Abstract:

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.

Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
415 Effect of Welding Processes on Fatigue Properties of Ti-6Al-4V Alloy Joints

Authors: T.S.Balasubramanian, V.Balasubramanian, M.A.Muthumanikkam

Abstract:

This paper reports the fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V titanium alloy. Centre cracked tensile specimens were prepared to evaluate the fatigue crack growth behaviour. A 100kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load (stress ratio of 0.1 and frequency of 10 Hz). Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Critical and threshold stress intensity factor ranges were also evaluated. Fatigue crack growth behaviour of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.

Keywords: Fatigue, Non ferrous metals and alloys, welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4515
414 Inverse Dynamics of the Mould Base of Blow Molding Machines

Authors: Vigen Arakelian

Abstract:

This paper deals with the study of devices for displacement of the mould base of blow-molding machines. The displacement of the mould in the studied case is carried out by a linear actuator, which ensures the descent of the mould base and by extension springs, which return the letter in the initial position. The aim of this paper is to study the inverse dynamics of the device for displacement of the mould base of blow-molding machines and to determine its optimum parameters for higher rate of production. In the other words, it is necessary to solve the inverse dynamic problem to find the equation of motion linking applied forces with displacements. This makes it possible to determine the stiffness coefficient of the spring to turn the mold base back to the initial position for a given time. The obtained results are illustrated by a numerical example. It is shown that applying a spring with stiffness returns the mould base of the blow molding machine into the initial position in 0.1 sec.

Keywords: Design, blow-molding machines, dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
413 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
412 A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem

Authors: Mohammad Mirabi

Abstract:

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

Keywords: Hybrid genetic algorithm, Scheduling, Permutationflow-shop, Sequence dependent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
411 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
410 DIFFER: A Propositionalization approach for Learning from Structured Data

Authors: Thashmee Karunaratne, Henrik Böstrom

Abstract:

Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.

Keywords: Machine learning, Structure classification, Propositionalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222