Search results for: mechanism-model combined motion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1534

Search results for: mechanism-model combined motion

514 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation

Authors: A. Mohajer, A. Noroozi, S. Norouzi

Abstract:

The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.

Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
513 Speed Characteristics of Mixed Traffic Flow on Urban Arterials

Authors: Ashish Dhamaniya, Satish Chandra

Abstract:

Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.

Keywords: Normal distribution, percentile speed, speed spread ratio, traffic volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4245
512 Simulation on the Performance of Carbon Dioxide and HFC-125 Heat Pumpsfor Medium-and High-Temperature Heating

Authors: Young-Jin Baikand, Minsung Kim

Abstract:

In order to compare the performance of the carbon dioxide and HFC-125 heat pumps for medium-and high-temperature heating, both heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler were fixed at 40/90°C and 40/150°C.The results shows that the HFC-125 heat pump has 6% higher heating COP than carbon dioxide heat pump when the heat sink exit temperature is fixed at 90ºC, while the latter outperforms the former when the heat sink exit temperature is fixed at 150ºC under the simulation conditions considered in the present study.

Keywords: Carbon dioxide, HFC-125, trans critical, heat pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
511 Modes of Collapse of Compress–Expand Member under Axial Loading

Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Ken Kaminishi, Dai-Heng Chen

Abstract:

In this paper, a study on the modes of collapse of compress- expand members are presented. Compress- expand member is a compact, multiple-combined cylinders, to be proposed as energy absorbers. Previous studies on the compress- expand member have clarified its energy absorption efficiency, proposed an approximate equation to describe its deformation characteristics and also highlighted the improvement that it has brought. However, for the member to be practical, the actual range of geometrical dimension that it can maintain its applicability must be investigated. In this study, using a virtualized materials that comply the bilinear hardening law, Finite element Method (FEM) analysis on the collapse modes of compress- expand member have been conducted. Deformation maps that plotted the member's collapse modes with regards to the member's geometric and material parameters were then presented in order to determine the dimensional range of each collapse modes.

Keywords: Axial collapse, compress-expand member, tubular member, finite element method, modes of collapse, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
510 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
509 Quantitative Indicator of Abdominal Aortic Aneurysm Rupture Risk Based on its Geometric Parameters

Authors: Guillermo Vilalta, Félix Nieto, Carlos Vaquero, José A. Vilalta

Abstract:

Abdominal aortic aneurysms rupture (AAAs) is one of the main causes of death in the world. This is a very complex phenomenon that usually occurs “without previous warning". Currently, criteria to assess the aneurysm rupture risk (peak diameter and growth rate) can not be considered as reliable indicators. In a first approach, the main geometric parameters of aneurysms have been linked into five biomechanical factors. These are combined to obtain a dimensionless rupture risk index, RI(t), which has been validated preliminarily with a clinical case and others from literature. This quantitative indicator is easy to understand, it allows estimating the aneurysms rupture risks and it is expected to be able to identify the one in aneurysm whose peak diameter is less than the threshold value. Based on initial results, a broader study has begun with twelve patients from the Clinic Hospital of Valladolid-Spain, which are submitted to periodic follow-up examinations.

Keywords: AAA, rupture risk prediction, biomechanical factors, AAA geometric characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
508 The Application of Real Options to Capital Budgeting

Authors: George Yungchih Wang

Abstract:

Real options theory suggests that managerial flexibility embedded within irreversible investments can account for a significant value in project valuation. Although the argument has become the dominant focus of capital investment theory over decades, yet recent survey literature in capital budgeting indicates that corporate practitioners still do not explicitly apply real options in investment decisions. In this paper, we explore how real options decision criteria can be transformed into equivalent capital budgeting criteria under the consideration of uncertainty, assuming that underlying stochastic process follows a geometric Brownian motion (GBM), a mixed diffusion-jump (MX), or a mean-reverting process (MR). These equivalent valuation techniques can be readily decomposed into conventional investment rules and “option impacts", the latter of which describe the impacts on optimal investment rules with the option value considered. Based on numerical analysis and Monte Carlo simulation, three major findings are derived. First, it is shown that real options could be successfully integrated into the mindset of conventional capital budgeting. Second, the inclusion of option impacts tends to delay investment. It is indicated that the delay effect is the most significant under a GBM process and the least significant under a MR process. Third, it is optimal to adopt the new capital budgeting criteria in investment decision-making and adopting a suboptimal investment rule without considering real options could lead to a substantial loss in value.

Keywords: real options, capital budgeting, geometric Brownianmotion, mixed diffusion-jump, mean-reverting process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770
507 Fatigue Failure Analysis in AISI 304 Stainless Wind Turbine Shafts

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Wind turbines are equipment of great importance for generating clean energy in countries and regions with abundant winds. However, complex loadings fluctuations to which they are subject can cause premature failure of these equipment due to the material fatigue process. This work evaluates fatigue failures in small AISI 304 stainless steel turbine shafts. Fractographic analysis techniques, chemical analyzes using energy dispersive spectrometry (EDS), and hardness tests were used to verify the origin of the failures, characterize the properties of the components and the material. The nucleation of cracks on the shafts' surface was observed due to a combined effect of variable stresses, geometric stress concentrating details, and surface wear, leading to the crack's propagation until the catastrophic failure. Beach marks were identified in the macrographic examination, characterizing the probable failure due to fatigue. The sensitization phenomenon was also observed.

Keywords: Fatigue, sensitization phenomenon, stainless steel shafts, wind turbine failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
506 Layered Multiple Description Coding For Robust Video Transmission Over Wireless Ad-Hoc Networks

Authors: Joohee Kim

Abstract:

This paper presents a video transmission system using layered multiple description (coding (MDC) and multi-path transport for reliable video communications in wireless ad-hoc networks. The proposed MDC extends a quality-scalable H.264/AVC video coding algorithm to generate two independent descriptions. The two descriptions are transmitted over different paths to a receiver in order to alleviate the effect of unstable channel conditions of wireless adhoc networks. If one description is lost due to transmission erros, then the correctly received description is used to estimate the lost information of the corrupted description. The proposed MD coder maintains an adequate video quality as long as both description are not simultaneously lost. Simulation results show that the proposed MD coding combined with multi-path transport system is largely immune to packet losses, and therefore, can be a promising solution for robust video communications over wireless ad-hoc networks.

Keywords: Multiple description coding, wireless video streaming, rate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
505 Theoretical Considerations for Software Component Metrics

Authors: V. Lakshmi Narasimhan, Bayu Hendradjaya

Abstract:

We have defined two suites of metrics, which cover static and dynamic aspects of component assembly. The static metrics measure complexity and criticality of component assembly, wherein complexity is measured using Component Packing Density and Component Interaction Density metrics. Further, four criticality conditions namely, Link, Bridge, Inheritance and Size criticalities have been identified and quantified. The complexity and criticality metrics are combined to form a Triangular Metric, which can be used to classify the type and nature of applications. Dynamic metrics are collected during the runtime of a complete application. Dynamic metrics are useful to identify super-component and to evaluate the degree of utilisation of various components. In this paper both static and dynamic metrics are evaluated using Weyuker-s set of properties. The result shows that the metrics provide a valid means to measure issues in component assembly. We relate our metrics suite with McCall-s Quality Model and illustrate their impact on product quality and to the management of component-based product development.

Keywords: Component Assembly, Component Based SoftwareEngineering, CORBA Component Model, Software ComponentMetrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
504 Device for 3D Analysis of Basic Movements of the Lower Extremity

Authors: Jiménez Villanueva Mayra Alejandra, Ortíz Casallas Diana Carolina, Luengas Contreras Lely Adriana

Abstract:

This document details the process of developing a wireless device that captures the basic movements of the foot (plantar flexion, dorsal flexion, abduction, adduction.), and the knee movement (flexion). It implements a motion capture system by using a hardware based on optical fiber sensors, due to the advantages in terms of scope, noise immunity and speed of data transmission and reception. The operating principle used by this system is the detection and transmission of joint movement by mechanical elements and their respective measurement by optical ones (in this case infrared). Likewise, Visual Basic software is used for reception, analysis and signal processing of data acquired by the device, generating a 3D graphical representation in real time of each movement. The result is a boot in charge of capturing the movement, a transmission module (Implementing Xbee Technology) and a receiver module for receiving information and sending it to the PC for their respective processing. The main idea with this device is to help on topics such as bioengineering and medicine, by helping to improve the quality of life and movement analysis.

Keywords: abduction, adduction, A / D converter, Autodesk 3DMax, Infrared Diode, Driver, extension, flexion, Infrared LEDs, Interface, Modeling OPENGL, Optical Fiber, USB CDC(Communications Device Class), Virtual Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
503 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge

Authors: Heng Han, Zhilei Liang, Xiangong Zhou

Abstract:

In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed. By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1 ℃, which meets the requirements of construction control accuracy. For the main cable with a diameter greater than 400 mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.

Keywords: Suspension bridge, main cable, temperature field, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
502 Combining Color and Layout Features for the Identification of Low-resolution Documents

Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold

Abstract:

This paper proposes a method, combining color and layout features, for identifying documents captured from lowresolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. The combined color and layout features are arranged in a symbolic file, which is unique for each document and is called the document-s visual signature. Our identification method first uses the color information in the signatures in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining search space. Finally, our experiment considers slide documents, which are often captured using handheld devices.

Keywords: Document color modeling, document visual signature, kernel density estimation, document identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
501 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
500 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: Analytical method, mechanical responses, spherical wave propagation, traumatic brain injury.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
499 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
498 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking

Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko

Abstract:

A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.

Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
497 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels

Authors: Mahmoud M. Tash

Abstract:

The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.

Keywords: Hot Forging, hot rolling, heat treatment, hardness (hv), impact toughness (j), microstructure, low alloy steels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3454
496 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: Climate changes, dry soil, Phytopathogenicity, Predictive model, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
495 The Estimation of Human Vital Signs Complexity

Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius

Abstract:

Nonstationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based on the interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore, we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables’ interactions.

Keywords: Cardiac diseases, Complex systems theory, ECG analysis, matrix analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
494 Utility Assessment Model for Wireless Technology in Construction

Authors: Y. Abdelrazig, A. Ghanem

Abstract:

Construction projects are information intensive in nature and involve many activities that are related to each other. Wireless technologies can be used to improve the accuracy and timeliness of data collected from construction sites and shares it with appropriate parties. Nonetheless, the construction industry tends to be conservative and shows hesitation to adopt new technologies. A main concern for owners, contractors or any person in charge on a job site is the cost of the technology in question. Wireless technologies are not cheap. There are a lot of expenses to be taken into consideration, and a study should be completed to make sure that the importance and savings resulting from the usage of this technology is worth the expenses. This research attempts to assess the effectiveness of using the appropriate wireless technologies based on criteria such as performance, reliability, and risk. The assessment is based on a utility function model that breaks down the selection issue into alternatives attribute. Then the attributes are assigned weights and single attributes are measured. Finally, single attribute are combined to develop one single aggregate utility index for each alternative.

Keywords: Analytic Hierarchy Process, Utility Function, Wireless Technologies, construction management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
493 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing

Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
492 Scheduling Multiple Workflow Using De-De Dodging Algorithm and PBD Algorithm in Cloud: Detailed Study

Authors: B. Arun Kumar, T. Ravichandran

Abstract:

Workflow scheduling is an important part of cloud computing and based on different criteria it decides cost, execution time, and performances. A cloud workflow system is a platform service facilitating automation of distributed applications based on new cloud infrastructure. An aspect which differentiates cloud workflow system from others is market-oriented business model, an innovation which challenges conventional workflow scheduling strategies. Time and Cost optimization algorithm for scheduling Hybrid Clouds (TCHC) algorithm decides which resource should be chartered from public providers is combined with a new De-De algorithm considering that every instance of single and multiple workflows work without deadlocks. To offset this, two new concepts - De-De Dodging Algorithm and Priority Based Decisive Algorithm - combine with conventional deadlock avoidance issues by proposing one algorithm that maximizes active (not just allocated) resource use and reduces Makespan.

Keywords: Workflow Scheduling, cloud workflow, TCHC algorithm, De-De Dodging Algorithm, Priority Based Decisive Algorithm (PBD), Makespan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
491 A Hybrid Particle Swarm Optimization Solution to Ramping Rate Constrained Dynamic Economic Dispatch

Authors: Pichet Sriyanyong

Abstract:

This paper presents the application of an enhanced Particle Swarm Optimization (EPSO) combined with Gaussian Mutation (GM) for solving the Dynamic Economic Dispatch (DED) problem considering the operating constraints of generators. The EPSO consists of the standard PSO and a modified heuristic search approaches. Namely, the ability of the traditional PSO is enhanced by applying the modified heuristic search approach to prevent the solutions from violating the constraints. In addition, Gaussian Mutation is aimed at increasing the diversity of global search, whilst it also prevents being trapped in suboptimal points during search. To illustrate its efficiency and effectiveness, the developed EPSO-GM approach is tested on the 3-unit and 10-unit 24-hour systems considering valve-point effect. From the experimental results, it can be concluded that the proposed EPSO-GM provides, the accurate solution, the efficiency, and the feature of robust computation compared with other algorithms under consideration.

Keywords: Particle Swarm Optimization (PSO), GaussianMutation (GM), Dynamic Economic Dispatch (DED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
490 The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading

Authors: Abdalla Kablan, Joseph Falzon

Abstract:

This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.

Keywords: Financial decision making, High frequency trading, Adaprive neuro-fuzzy systems, moving average strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072
489 Dempster-Shafer Evidence Theory for Image Segmentation: Application in Cells Images

Authors: S. Ben Chaabane, M. Sayadi, F. Fnaiech, E. Brassart

Abstract:

In this paper we propose a new knowledge model using the Dempster-Shafer-s evidence theory for image segmentation and fusion. The proposed method is composed essentially of two steps. First, mass distributions in Dempster-Shafer theory are obtained from the membership degrees of each pixel covering the three image components (R, G and B). Each membership-s degree is determined by applying Fuzzy C-Means (FCM) clustering to the gray levels of the three images. Second, the fusion process consists in defining three discernment frames which are associated with the three images to be fused, and then combining them to form a new frame of discernment. The strategy used to define mass distributions in the combined framework is discussed in detail. The proposed fusion method is illustrated in the context of image segmentation. Experimental investigations and comparative studies with the other previous methods are carried out showing thus the robustness and superiority of the proposed method in terms of image segmentation.

Keywords: Fuzzy C-means, Color image, data fusion, Dempster-Shafer's evidence theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
488 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
487 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
486 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Elastic foundation, impact, moving load, thick plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
485 Simulation and Statistical Analysis of Motion Behavior of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

The impact force of a rockfall is mainly determined by its moving behavior and velocity, which are contingent on the rock shape, slope gradient, height, and surface roughness of the moving path. It is essential to precisely calculate the moving path of the rockfall in order to effectively minimize and prevent damages caused by the rockfall. By applying the Colorado Rockfall Simulation Program (CRSP) program as the analysis tool, this research studies the influence of three shapes of rock (spherical, cylindrical and discoidal) and surface roughness on the moving path of a single rockfall. As revealed in the analysis, in addition to the slope gradient, the geometry of the falling rock and joint roughness coefficient ( JRC ) of the slope are the main factors affecting the moving behavior of a rockfall. On a single flat slope, both the rock-s bounce height and moving velocity increase as the surface gradient increases, with a critical gradient value of 1:m = 1 . Bouncing behavior and faster moving velocity occur more easily when the rock geometry is more oval. A flat piece tends to cause sliding behavior and is easily influenced by the change of surface undulation. When JRC <1.4 the moving velocity decreases and the bounce height increases as JRC increases. If the gradient is fixed, when JRC is greater, the bounce height will be higher, while the moving velocity will experience a downward trend. Therefore, the best protecting point and facilities can be chosen if the moving paths of rockfalls are precisely estimated.

Keywords: rock shape, surface roughness, moving path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951