Search results for: genetic algorithm basedselected ensemble.
2670 Enhanced Spectral Envelope Coding Based On NLMS for G.729.1
Authors: Keunseok Cho, Sangbae Jeong, Hyungwook Chang, Minsoo Hahn
Abstract:
In this paper, a new encoding algorithm of spectral envelope based on NLMS in G.729.1 for VoIP is proposed. In the TDAC part of G.729.1, the spectral envelope and MDCT coefficients extracted in the weighted CELP coding error (lower-band) and the higher-band input signal are encoded. In order to reduce allocation bits for spectral envelope coding, a new quantization algorithm based on NLMS is proposed. Also, reduced bits are used to enhance sound quality. The performance of the proposed algorithm is evaluated by sound quality and bit reduction rates in clean and frame loss conditions.
Keywords: G.729.1, MDCT coefficient, NLMS, spectral envelope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16692669 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface
Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain
Abstract:
One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.
Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032668 An Algorithm for an Optimal Staffing Problem in Open Shop Environment
Authors: Daniela I. Borissova, Ivan C. Mustakerov
Abstract:
The paper addresses a problem of optimal staffing in open shop environment. The problem is to determine the optimal number of operators serving a given number of machines to fulfill the number of independent operations while minimizing staff idle. Using a Gantt chart presentation of the problem it is modeled as twodimensional cutting stock problem. A mixed-integer programming model is used to get minimal job processing time (makespan) for fixed number of machines' operators. An algorithm for optimal openshop staffing is developed based on iterative solving of the formulated optimization task. The execution of the developed algorithm provides optimal number of machines' operators in the sense of minimum staff idle and optimal makespan for that number of operators. The proposed algorithm is tested numerically for a real life staffing problem. The testing results show the practical applicability for similar open shop staffing problems.Keywords: Integer programming, open shop problem, optimal staffing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33202667 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction
Authors: Tarek Aboueldahab
Abstract:
In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.
Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15052666 Detection of Breast Cancer in the JPEG2000 Domain
Authors: Fayez M. Idris, Nehal I. AlZubaidi
Abstract:
Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15772665 Reentry Trajectory Optimization Based on Differential Evolution
Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao
Abstract:
Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17352664 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique
Authors: P. Acharjee, S. K. Goswami
Abstract:
Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18172663 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632662 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning
Authors: K. Sivasubramanian, K. B. Jayanthi
Abstract:
Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19572661 A Phenomic Algorithm for Reconstruction of Gene Networks
Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy
Abstract:
The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.
Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19262660 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm
Authors: Hossein Abbasi
Abstract:
The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.
Keywords: Frequency control, HS algorithm, microgrid, PI controller, voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13652659 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28852658 A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions
Authors: Mohammad Reza Ghasemi, Ali Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimization, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14662657 A New Implementation of Miura-Arita Algorithm for Miura Curves
Authors: A. Basiri, S. Rahmany, D. Khatibi
Abstract:
The aim of this paper is to review some of standard fact on Miura curves. We give some easy theorem in number theory to define Miura curves, then we present a new implementation of Arita algorithm for Miura curves.
Keywords: Miura curve, discrete logarithm problem, algebraic curve cryptography, Jacobian group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632656 A Comparison of Real Valued Transforms for Image Compression
Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori
Abstract:
In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15022655 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: Incremental conductance Algorithm, Perturb and Observe Algorithm, Photovoltaic System and Simulation Results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12592654 A Particle Swarm Optimization Approach for the Earliness-Tardiness No-Wait Flowshop Scheduling Problem
Authors: Sedighe Arabameri, Nasser Salmasi
Abstract:
In this researcha particle swarm optimization (PSO) algorithm is proposedfor no-wait flowshopsequence dependent setuptime scheduling problem with weighted earliness-tardiness penalties as the criterion (|, |Σ " ).The smallestposition value (SPV) rule is applied to convert the continuous value of position vector of particles in PSO to job permutations.A timing algorithm is generated to find the optimal schedule and calculate the objective function value of a given sequence in PSO algorithm. Twodifferent neighborhood structures are applied to improve the solution quality of PSO algorithm.The first one is based on variable neighborhood search (VNS) and the second one is a simple one with invariable structure. In order to compare the performance of two neighborhood structures, random test problems are generated and solved by both neighborhood approaches.Computational results show that the VNS algorithmhas better performance than the other one especially for the large sized problems.Keywords: minimization of summation of weighed earliness and tardiness, no-wait flowshop scheduling, particle swarm optimization, sequence dependent setup times
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16262653 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22782652 Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment
Authors: Fei Xue, Hong Yu, Da-da Wang, Wei Zhang, Rong-min Zou, Xiao-lanCai
Abstract:
The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.
Keywords: de-noising, edge detection, wavelet transform, X-ray
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15512651 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm
Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri
Abstract:
Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15782650 System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations
Authors: Jay Singh, Kalyan Chatterjee, C. B. Vishwakarma
Abstract:
A mixed method by combining a Eigen algorithm and improved pade approximations is proposed for reducing the order of the large-scale dynamic systems. The most dominant Eigen value of both original and reduced order systems remain same in this method. The proposed method guarantees stability of the reduced model if the original high-order system is stable and is comparable in quality with the other well known existing order reduction methods. The superiority of the proposed method is shown through examples taken from the literature.
Keywords: Eigen algorithm, Order reduction, improved pade approximations, Stability, Transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20952649 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.Keywords: Clustering, Categorical, Incremental, Frequency, Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18212648 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.
Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6942647 Automated Inspection Algorithm for Thick Plate Using Dual Light Switching Lighting Method
Authors: Yong-JuJeon, Doo-chul Choi, Jong Pil Yun, Changhyun Park, Homoon Bae, Sang Woo Kim
Abstract:
This paper presents an automated inspection algorithm for a thick plate. Thick plates typically have various types of surface defects, such as scabs, scratches, and roller marks. These defects have individual characteristics including brightness and shape. Therefore, it is not simple to detect all the defects. In order to solve these problems and to detect defects more effectively, we propose a dual light switching lighting method and a defect detection algorithm based on Gabor filters.Keywords: Thick plate, Defect, Inspection, Gabor filter, Dual Light Switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18772646 Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits
Authors: Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova
Abstract:
The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.Keywords: Evolvable hardware, evolutionary algorithm, digitallogic circuit, mutation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15022645 A Cognitive Robot Collaborative Reinforcement Learning Algorithm
Authors: Amit Gil, Helman Stern, Yael Edan
Abstract:
A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.Keywords: Robot learning, human-robot collaboration, motion planning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17242644 GEP Considering Purchase Prices, Profits of IPPs and Reliability Criteria Using Hybrid GA and PSO
Authors: H. Shayeghi, H. Hosseini, A. Shabani, M. Mahdavi
Abstract:
In this paper, optimal generation expansion planning (GEP) is investigated considering purchase prices, profits of independent power producers (IPPs) and reliability criteria using a new method based on hybrid coded Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). In this approach, optimal purchase price of each IPP is obtained by HCGA and reliability criteria are calculated by PSO technique. It should be noted that reliability criteria and the rate of carbon dioxide (CO2) emission have been considered as constraints of the GEP problem. Finally, the proposed method has been tested on the case study system. The results evaluation show that the proposed method can simply obtain optimal purchase prices of IPPs and is a fast method for calculation of reliability criteria in expansion planning. Also, considering the optimal purchase prices and profits of IPPs in generation expansion planning are caused that the expansion costs are decreased and the problem is solved more exactly.
Keywords: GEP Problem, IPPs, Reliability Criteria, GA, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14322643 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19642642 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: Cell formation problem, Group technology, Imperialist competitive algorithm, Sequence data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15892641 An Augmented Beam-search Based Algorithm for the Strip Packing Problem
Authors: Hakim Akeb, Mhand Hifi
Abstract:
In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.
Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357