Search results for: agile methods
3026 The Capacity Building in the Natural Disaster Management of Thailand
Authors: Eakarat Boonreang
Abstract:
The past two decades, Thailand faced the natural disasters, for instance, Gay typhoon in 1989, tsunami in 2004, and huge flood in 2011. The disaster management in Thailand was improved both structure and mechanism for cope with the natural disaster since 2007. However, the natural disaster management in Thailand has various problems, for examples, cooperation between related an organizations have not unity, inadequate resources, the natural disaster management of public sectors not proactive, people has not awareness the risk of the natural disaster, and communities did not participate in the natural disaster management. Objective of this study is to find the methods for capacity building in the natural disaster management of Thailand. The concept and information about the capacity building and the natural disaster management of Thailand were reviewed and analyzed by classifying and organizing data. The result found that the methods for capacity building in the natural disaster management of Thailand should be consist of 1) link operation and information in the natural disaster management between nation, province, local and community levels, 2) enhance competency and resources of public sectors which relate to the natural disaster management, 3) establish proactive natural disaster management both planning and implementation, 4) decentralize the natural disaster management to local government organizations, 5) construct public awareness in the natural disaster management to community, 6) support Community Based Disaster Risk Management (CBDRM) seriously, and 7) emphasis on participation in the natural disaster management of all stakeholders.
Keywords: Capacity Building, Community Based Disaster Risk Management, Natural Disaster Management, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32463025 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.
Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5003024 Promoting Mathematical Understanding Using ICT in Teaching and Learning
Authors: Kamel Hashem, Ibrahim Arman
Abstract:
Information and Communication Technologies (ICT) in mathematical education is a very active field of research and innovation, where learning is understood to be meaningful and grasping multiple linked representation rather than rote memorization, a great amount of literature offering a wide range of theories, learning approaches, methodologies and interpretations, are generally stressing the potentialities for teaching and learning using ICT. Despite the utilization of new learning approaches with ICT, students experience difficulties in learning concepts relevant to understanding mathematics, much remains unclear about the relationship between the computer environment, the activities it might support, and the knowledge that might emerge from such activities. Many questions that might arise in this regard: to what extent does the use of ICT help students in the process of understanding and solving tasks or problems? Is it possible to identify what aspects or features of students' mathematical learning can be enhanced by the use of technology? This paper will highlight the interest of the integration of information and communication technologies (ICT) into the teaching and learning of mathematics (quadratic functions), it aims to investigate the effect of four instructional methods on students- mathematical understanding and problem solving. Quantitative and qualitative methods are used to report about 43 students in middle school. Results showed that mathematical thinking and problem solving evolves as students engage with ICT activities and learn cooperatively.
Keywords: Dynamic Geometry Software, Information and Communication Technologies, Visualization, Mathematical Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18533023 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta
Authors: Christiana Gauci-Sciberras
Abstract:
The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.
Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5023022 Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods
Authors: Minh Van Nguyen, Magnea Gudrun Karlsdottir, Adalheidur Olafsdottir, Arnljotur Bjarki Bergsson, Sigurjon Arason
Abstract:
The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).
Keywords: Bleeding method, chilled storage, microbial growth, sensory evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29843021 Feasibility Studies through Quantitative Methods: The Revamping of a Tourist Railway Line in Italy
Authors: Armando Cartenì, Ilaria Henke
Abstract:
Recently, the Italian government has approved a new law for public contracts and has been laying the groundwork for restarting a planning phase. The government has adopted the indications given by the European Commission regarding the estimation of the external costs within the Cost-Benefit Analysis, and has been approved the ‘Guidelines for assessment of Investment Projects’. In compliance with the new Italian law, the aim of this research was to perform a feasibility study applying quantitative methods regarding the revamping of an Italian tourist railway line. A Cost-Benefit Analysis was performed starting from the quantification of the passengers’ demand potentially interested in using the revamped rail services. The benefits due to the external costs reduction were also estimated (quantified) in terms of variations (with respect to the not project scenario): climate change, air pollution, noises, congestion, and accidents. Estimations results have been proposed in terms of the Measure of Effectiveness underlying a positive Net Present Value equal to about 27 million of Euros, an Internal Rate of Return much greater the discount rate, a benefit/cost ratio equal to 2 and a PayBack Period of 15 years.
Keywords: Cost-benefit analysis, evaluation analysis, demand management, external cost, transport planning, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8813020 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: T. Aydin, M. F. Alaeddinoglu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: Apriori algorithm, association rules, data mining, spatio-temporal data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14053019 Towards the Design of a GIS-Linked Agent-Based Model for the Lake Chad Basin Region: Challenges and Opportunities
Authors: Stephen Akuma, Isaac Terngu Adom, Evelyn Doofan Akuma
Abstract:
Generation after generation of humans has experienced conflicts leading to needless deaths. Usually, it begins as a minor argument that occasionally escalates into a full-fledged conflict. There has been a lingering crisis in the Lake Chad Basin (LCB) of Africa for over a decade leading to bloodshed that has claimed thousands of lives. The terrorist group, Boko Haram has claimed responsibility for these deaths. Efforts have been made by the governments in the LCB region to end the crisis through kinetic approaches, but the conflict persists. In this work, we explored non-kinetic methods used by social scientists in resolving conflicts, with a focus on computational approaches due to the increasing processing power of the computer. Firstly, we reviewed the innovative computational methods available for researchers working on conflict, violence, and peace. Secondly, we described how an Agent-Based Model (ABM) can be linked with a Geographic Information System (GIS) to model the LCB. Finally, this research discusses the challenges and opportunities in constructing a Geographic Information System linked Agent-Based Model of the LCB region.
Keywords: Agent-based modelling, conflict, Geographical Information Systems, Lake Chad Basin, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433018 Effects of Energy Consumption on Indoor Air Quality
Authors: M. Raatikainen, J-P. Skön, M. Johansson, K. Leiviskä, M. Kolehmainen
Abstract:
Continuous measurements and multivariate methods are applied in researching the effects of energy consumption on indoor air quality (IAQ) in a Finnish one-family house. Measured data used in this study was collected continuously in a house in Kuopio, Eastern Finland, during fourteen months long period. Consumption parameters measured were the consumptions of district heat, electricity and water. Indoor parameters gathered were temperature, relative humidity (RH), the concentrations of carbon dioxide (CO2) and carbon monoxide (CO) and differential air pressure. In this study, self-organizing map (SOM) and Sammon's mapping were applied to resolve the effects of energy consumption on indoor air quality. Namely, the SOM was qualified as a suitable method having a property to summarize the multivariable dependencies into easily observable two-dimensional map. Accompanying that, the Sammon's mapping method was used to cluster pre-processed data to find similarities of the variables, expressing distances and groups in the data. The methods used were able to distinguish 7 different clusters characterizing indoor air quality and energy efficiency in the study house. The results indicate, that the cost implications in euros of heating and electricity energy vary according to the differential pressure, concentration of carbon dioxide, temperature and season.
Keywords: Indoor air quality, Energy efficiency, Self- organizing map, Sammon's mapping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18783017 Growth Performance and Yield of the Edible White Rot Fungus (Pleurotus ostreatus) on Different Agro Waste Materials
Authors: Terna T. Paul, Iloechuba P. Ngozika
Abstract:
A study was carried out to evaluate the growth and yield performance of Pleurotus ostreatus spawn on different organic substrates in Lafia, Nasarawa State, Nigeria. 50 g each of four different substrates namely; corncobs, rice straw, sugarcane bagasse and sawdust sourced locally from farmlands and processing sites, were amended with 2% calcium carbonate and calcium sulphide and sterilized using three sterilization methods namely; hot water, steam, and lime. Five grams of P. ostreatus spawn were inoculated unto treated substrates, incubated in the dark for 16 days and in light for 19 days at 25 0C for the commencement of pinhead and fruit body formations respectively. Growth and yield parameters such as days to full colonization, days to pinhead formation and days to fruit body formation were recorded. Cap diameter and fresh weight of mature mushrooms were also measured for a total count of four flushes. P. ostreatus spawn grown on sugarcane bagasse recorded the highest mean cap diameter (4.69 cm), highest mean fresh weight (34.68 g), highest biological efficiency (69.37%) and highest production rate (2.83 g per day). Spawn grown on rice straw recorded the least number of days to full substrate colonization (11.00). Spawn grown on corn cobs recorded the least mean number of days to pin head (18.75) and fruiting body formations (20.25). There were no significant differences (P ≤ 0.05) among the evaluated substrates with respect to growth and yield performance of P. ostreatus. Substrates sterilized with hot water supported the highest mean cap diameter (5.64 cm), highest biological efficiency (87.04%) and highest production rate (3.43 g per day) of P. ostreatus. Significant differences (P ≤ 0.05) were observed in cap diameter, fresh weight, biological efficiency and production rates among the evaluated sterilization methods. Hot water sterilization of sugarcane bagasse could be adopted for enhanced yield of oyster mushrooms, especially among indigent farming communities in Nigeria and beyond.
Keywords: Agro wastes, growth, Pleurotus ostreatus, sterilization methods, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8493016 A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding
Authors: C. Kalamani, K. Paramasivam
Abstract:
Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.
Keywords: Modified run length coding, multilevel selective Huffman coding, built-in-self-test modified selective Huffman coding, automatic test equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12743015 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering
Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute
Abstract:
Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.
Keywords: Films, magnetron co-sputtering, photocatalysis, TiO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6513014 Client Satisfaction: Does Private or Public Health Sector Make a Difference? Results from Secondary Data Analysis in Sindh, Pakistan
Authors: Wajiha Javed, Arsalan Jabbar, Nelofer Mehboob, Muhammad Tafseer, Zahid Memon
Abstract:
Introduction: Researchers globally have strived to explore diverse factors that augment the continuation and uptake of family planning methods. Clients’ satisfaction is one of the core determinants facilitating continuation of family planning methods. There is a major debate yet scanty evidence to contrast public and private sectors with respect to client satisfaction. The objective of this study is to compare quality-of-care provided by public and private sectors of Pakistan through a client satisfaction lens. Methods: We used Pakistan Demographic Heath Survey 2012-13 dataset on 3133 women. Ten different multivariate models were made. to explore the relationship between client satisfaction and dependent outcome after adjusting for all known confounding factors and results are presented as OR and AOR (95% CI). Results: Multivariate analyses showed that clients were less satisfied in contraceptive provision from private sector as compared to public sector (AOR 0.92, 95% CI 0.63-1.68) even though the result was not statistically significant. Clients were more satisfied from private sector as compared to the public sector with respect to other determinants of quality-of-care follow-up care (AOR 3.29, 95% CI 1.95-5.55), infection prevention (AOR 2.41, 95% CI 1.60-3.62), counseling services (AOR 2.01, 95% CI 1.27-3.18, timely treatment (AOR 3.37, 95% CI 2.20-5.15), attitude of staff (AOR 2.23, 95% CI 1.50-3.33), punctuality of staff (AOR 2.28, 95% CI 1.92-4.13), timely referring (AOR 2.34, 95% CI 1.63-3.35), staff cooperation (AOR 1.75, 95% CI 1.22-2.51) and complications handling (AOR 2.27, 95% CI 1.56-3.29). Discussion: Public sector has successfully attained substantial satisfaction levels with respect to provision of contraceptives, but it contrasts previous literature from a multi country studies. Our study though in is concordance with a study from Tanzania where public sector was more likely to offer family planning services to clients as compared to private facilities. Conclusion: In majority of the developing countries, public sector is more involved in FP service provision; however, in Pakistan clients’ satisfaction in private sector is more, which opens doors for public-private partnerships and collaboration in the near future.
Keywords: Client satisfaction, Family Planning, Public private partnership, Quality of care
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20263013 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace
Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia
Abstract:
In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.Keywords: α-Alumina, Consolidation, Matrix Ceramics, Powdery composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10953012 Towards Clustering of Web-based Document Structures
Authors: Matthias Dehmer, Frank Emmert Streib, Jürgen Kilian, Andreas Zulauf
Abstract:
Methods for organizing web data into groups in order to analyze web-based hypertext data and facilitate data availability are very important in terms of the number of documents available online. Thereby, the task of clustering web-based document structures has many applications, e.g., improving information retrieval on the web, better understanding of user navigation behavior, improving web users requests servicing, and increasing web information accessibility. In this paper we investigate a new approach for clustering web-based hypertexts on the basis of their graph structures. The hypertexts will be represented as so called generalized trees which are more general than usual directed rooted trees, e.g., DOM-Trees. As a important preprocessing step we measure the structural similarity between the generalized trees on the basis of a similarity measure d. Then, we apply agglomerative clustering to the obtained similarity matrix in order to create clusters of hypertext graph patterns representing navigation structures. In the present paper we will run our approach on a data set of hypertext structures and obtain good results in Web Structure Mining. Furthermore we outline the application of our approach in Web Usage Mining as future work.Keywords: Clustering methods, graph-based patterns, graph similarity, hypertext structures, web structure mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15063011 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22113010 Effect of Testing Device Calibration on Liquid Limit Assessment
Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug
Abstract:
Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. In this study, to reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolin samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values did not change at all as the drop height increased, and this explains the function of standard specifications.
Keywords: Calibration, Casagrande cup method, drop height, kaolin, liquid limit, placing form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603009 Nonlinear Control of a Continuous Bioreactor Based on Cell Population Model
Authors: Mahdi Sharifian, Mohammad Ali Fanaei
Abstract:
Saccharomyces cerevisiae (baker-s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance models can be used to capture the dynamic behavior of such cultures. In this paper an unstructured, segregated model is used which is based on population balance equation(PBE) and then in order to simulation, the 4th order Rung-Kutta is used for time dimension and three methods, finite difference, orthogonal collocation on finite elements and Galerkin finite element are used for discretization of the cell mass domain. The results indicate that the orthogonal collocation on finite element not only is able to predict the oscillating behavior of the cell culture but also needs much little time for calculations. Therefore this method is preferred in comparison with other methods. In the next step two controllers, a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller are designed for controlling the total cell mass per unit volume, and performances of these controllers are compared through simulation. The results show that although the PI controller has simpler structure, the GLC has better performance.Keywords: Bioreactor, cell population balance, finite difference, orthogonal collocation on finite elements, Galerkin finite element, feedback linearization, PI controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18833008 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System
Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar
Abstract:
MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19743007 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.
Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15513006 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures
Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen
Abstract:
Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.
Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17813005 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23293004 Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding
Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos
Abstract:
Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22473003 Determinants of Never Users of Contraception – Results from Pakistan Demographic and Health Survey 2012-13
Authors: Arsalan Jabbar, Wajiha Javed, Nelofer Mehboob, Zahid Memon
Abstract:
Introduction: There are multiple social, individual and cultural factors that influence an individual’s decision to adopt family planning methods especially among non-users in patriarchal societies like Pakistan. Non-users, if targeted efficiently, can contribute significantly to country’s CPR. A research study showed that nonusers if convinced to adopt lactational amenorrhea method can shift to long term methods in future. Research shows that if non users are targeted efficiently a 59% reduction in unintended pregnancies in Saharan Africa and South-Central and South-East Asia is anticipated. Methods: We did secondary data analysis on Pakistan Demographic Heath Survey (2012-13) dataset. Use of contraception (never-use/ever-use) was the outcome variable. At univariate level Chi-square/Fisher Exact test was used to assess relationship of baseline covariates with contraception use. Then variables to be incorporated in the model were checked for multicollinearity, confounding and interaction. Then binary logistic regression (with an urban-rural stratification) was done to find relationship between contraception use and baseline demographic and social variables. Results: The multivariate analyses of the study showed that younger women (≤ 29 years)were more prone to be never users as compared to those who were >30 years and this trend was seen in urban areas (AOR 1.92, CI 1.453-2.536) as well as rural areas (AOR 1.809, CI 1.421-2.303). While looking at regional variation, women from urban Sindh (AOR 1.548, CI 1.142-2.099) and urban Balochistan (AOR 2.403, CI 1.504-3.839) had more never users as compared to other urban regions. Women in the rich wealth quintile were more never users and this was seen both in urban and rural localities (urban (AOR 1.106 CI .753-1.624); rural areas (AOR 1.162, CI .887-1.524)) even though these were not statistically significant. Women idealizing more children (>4) are more never users as compared to those idealizing less children in both urban (AOR 1.854, CI 1.275-2.697) and rural areas (AOR 2.101, CI 1.514-2.916). Women who never lost a pregnancy were more inclined to be nonusers in rural areas (AOR 1.394, CI 1.127-1.723) .Women familiar with only traditional or no method had more never users in rural areas (AOR 1.717, CI 1.127-1.723) but in urban areas it wasn’t significant. Women unaware of Lady Health Worker’s presence in their area were more never users especially in rural areas (AOR 1.276, CI 1.014-1.607). Women who did not visit any care provider were more never users (urban (AOR 11.738, CI 9.112-15.121) rural areas (AOR 7.832, CI 6.243-9.826)). Discussion/Conclusion: This study concluded that government, policy makers and private sector family planning programs should focus on the untapped pool of never users (younger women from underserved provinces, in higher wealth quintiles, who desire more children.). We need to make sure to cover catchment areas where there are less LHWs and less providers as ignorance to modern methods and never been visited by an LHW are important determinants of never use. This all is in sync with previous literate from similar developing countries.Keywords: Contraception, Demographic and Health Survey, Family Planning, Never users.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21743002 Application of Computational Methods Mm2 and Gussian for Studing Unimolecular Decomposition of Vinil Ethers based on the Mechanism of Hydrogen Bonding
Authors: Behnaz Shahrokh, Garnik N. Sargsyan, Arkadi B. Harutyunyan
Abstract:
Investigations of the unimolecular decomposition of vinyl ethyl ether (VEE), vinyl propyl ether (VPE) and vinyl butyl ether (VBE) have shown that activation of the molecule of a ether results in formation of a cyclic construction - the transition state (TS), which may lead to the displacement of the thermodynamic equilibrium towards the reaction products. The TS is obtained by applying energy minimization relative to the ground state of an ether under the program MM2 when taking into account the hydrogen bond formation between a hydrogen atom of alkyl residue and the extreme atom of carbon of the vinyl group. The dissociation of TS up to the products is studied by energy minimization procedure using the mathematical program Gaussian. The obtained calculation data for VEE testify that the decomposition of this ether may be conditioned by hydrogen bond formation for two possible versions: when α- or β- hydrogen atoms of the ethyl group are bound to carbon atom of the vinyl group. Applying the same calculation methods to other ethers (VPE and VBE) it is shown that only in the case of hydrogen bonding between α-hydrogen atom of the alkyl residue and the extreme atom of carbon of the vinyl group (αH---C) results in decay of theses ethers.Keywords: Gaussian, MM2, ethers, TS, decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12203001 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods
Authors: Mochammad Dewo, Sumarsono Sudarto
Abstract:
The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.
Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243000 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7602999 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25452998 Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs
Authors: Hao Liu, Lihui Zheng, Chinedu J. Okere, Chao Wang, Xiangchun Wang, Peng Zhang
Abstract:
The coalbed methane (CBM) extraction industry (an unconventional energy source) has not established guidelines for experimental evaluation of sensitivity damage for coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide the future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.
Keywords: Coalbed methane, formation damage, permeability, unconventional energy source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3852997 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.
Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357