Search results for: Large scale networks
3813 Review of Various Designs and Development in Hydropower Turbines
Authors: F. Behrouzi, A. Maimun, M. Nakisa
Abstract:
The growth of population, rising fossil fuel prices (limited and decreasing day by day), pollution problem due to use of fossil fuels and increasing electrical demand are important factors that encourage the use of green and renewable energy technologies. Among the different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Currently, researchers mainly focused on design and development of different kind of turbines to capture hydropower to generate electricity as clean and reliable energy. This paper is a review of the status of research on water current turbines carried out to generate electricity from hydrokinetic energy especially in places where there is no electricity, but there is access to flowing water.
Keywords: Turbines, Renewable Energy, Hydropower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45803812 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15913811 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems
Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo
Abstract:
The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16833810 Synthesis of Wavelet Filters using Wavelet Neural Networks
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16643809 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11863808 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15913807 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18673806 System Reduction Using Modified Pole Clustering and Modified Cauer Continued Fraction
Authors: Jay Singh, C. B. Vishwakarma, Kalyan Chatterjee
Abstract:
A mixed method by combining modified pole clustering technique and modified cauer continued fraction is proposed for reducing the order of the large-scale dynamic systems. The denominator polynomial of the reduced order model is obtained by using modified pole clustering technique while the coefficients of the numerator are obtained by modified cauer continued fraction. This method generated 'k' number of reduced order models for kth order reduction. The superiority of the proposed method has been elaborated through numerical example taken from the literature and compared with few existing order reduction methods.
Keywords: Modified Pole Clustering, Modified Cauer Continued Fraction, Order Reduction, Stability, Transfer Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19663805 Research on Pressed Pile Test and Finite Element Analysis of Large-diameter Steel Pipe Pile of Zhanjiang Port
Authors: Ran Zhao, Zhi-liang Dong, You-yuan Wang, Lin-wang Su
Abstract:
In order to study pressed pile test and ultimate bearing capacity character of large-diameter steel pipe pile, based on two high-piled wharfs of Zhanjiang Port, pressed pile test and numerical simulation of three large-diameter steel pipe piles are analyzed in this paper. Anchored pile method is used to pressed pile test, and the curves of Q-s and ultimate bearing capacity are attained. Then the three piles are numerically simulated by ABAQUS, and results of numerical simulation and those of field test are comparatively analyzed. The results show that settlement value of numerical simulation is larger than that of field test in the process of loading, the difference value is widening with the increasing of load, and the ultimate difference value of settlement is 20% to 30%.Keywords: Large-diameter steel pipe pile, field test, finite element analysis, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19953804 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles
Authors: Bo Yang, Christopher Monterola
Abstract:
Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.
Keywords: Intersection control, autonomous vehicles, traffic modelling, intelligent transport system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16233803 Development of a Health Literacy Scale for Chinese-Speaking Adults in Taiwan
Authors: Frank C. Pan, Che-Long Su, Ching-Hsuen Chen
Abstract:
Background, measuring an individual-s Health Literacy is gaining attention, yet no appropriate instrument is available in Taiwan. Measurement tools that were developed and used in western countries may not be appropriate for use in Taiwan due to a different language system. Purpose of this research was to develop a Health Literacy measurement instrument specific for Taiwan adults. Methods, several experts of clinic physicians; healthcare administrators and scholars identified 125 common used health related Chinese phrases from major medical knowledge sources that easy accessible to the public. A five-point Likert scale is used to measure the understanding level of the target population. Such measurement is then used to compare with the correctness of their answers to a health knowledge test for validation. Samples, samples under study were purposefully taken from four groups of people in the northern Pingtung, OPD patients, university students, community residents, and casual visitors to the central park. A set of health knowledge index with 10 questions is used to screen those false responses. A sample size of 686 valid cases out of 776 was then included to construct this scale. An independent t-test was used to examine each individual phrase. The phrases with the highest significance are then identified and retained to compose this scale. Result, a Taiwan Health Literacy Scale (THLS) was finalized with 66 health-related phrases under nine divisions. Cronbach-s alpha of each division is at a satisfactory level of 89% and above. Conclusions, factors significantly differentiate the levels of health literacy are education, female gender, age, family members of stroke victims, experience with patient care, and healthcare professionals in the initial application in this study..Keywords: Health literacy, health knowledge, REALM, THLS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25263802 Integrating E-learning Environments with Computational Intelligence Assessment Agents
Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19323801 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks
Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha
Abstract:
Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.
Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27023800 Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern
Authors: Mahdi Esmaeili, Mansour Tarafdar
Abstract:
The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.Keywords: Sequential Patterns, Data Mining, ParallelAlgorithm, Multidimensional Sequence Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14763799 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Keywords: Distributed generation, heuristic approach, Optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18083798 The Risk Assessment of Nano-particles and Investigation of Their Environmental Impact
Authors: Nader Nabhani, Amir Tofighi
Abstract:
Nanotechnology is the science of creating, using and manipulating objects which have at least one dimension in range of 0.1 to 100 nanometers. In other words, nanotechnology is reconstructing a substance using its individual atoms and arranging them in a way that is desirable for our purpose. The main reason that nanotechnology has been attracting attentions is the unique properties that objects show when they are formed at nano-scale. These differing characteristics that nano-scale materials show compared to their nature-existing form is both useful in creating high quality products and dangerous when being in contact with body or spread in environment. In order to control and lower the risk of such nano-scale particles, the main following three topics should be considered: 1) First of all, these materials would cause long term diseases that may show their effects on body years after being penetrated in human organs and since this science has become recently developed in industrial scale not enough information is available about their hazards on body. 2) The second is that these particles can easily spread out in environment and remain in air, soil or water for very long time, besides their high ability to penetrate body skin and causing new kinds of diseases. 3) The third one is that to protect body and environment against the danger of these particles, the protective barriers must be finer than these small objects and such defenses are hard to accomplish. This paper will review, discuss and assess the risks that human and environment face as this new science develops at a high rate.Keywords: Nanotechnology, risk assessment, environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19823797 Inference of Stress-Strength Model for a Lomax Distribution
Abstract:
In this paper, the estimation of the stress-strength parameter R = P(Y < X), when X and Y are independent and both are Lomax distributions with the common scale parameters but different shape parameters is studied. The maximum likelihood estimator of R is derived. Assuming that the common scale parameter is known, the bayes estimator and exact confidence interval of R are discussed. Simulation study to investigate performance of the different proposed methods has been carried out.Keywords: Stress-Strength model; maximum likelihoodestimator; Bayes estimator; Lomax distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17933796 A Comprehensive Survey on RAT Selection Algorithms for Heterogeneous Networks
Authors: Abdallah AL Sabbagh, Robin Braun, Mehran Abolhasan
Abstract:
Due to the coexistence of different Radio Access Technologies (RATs), Next Generation Wireless Networks (NGWN) are predicted to be heterogeneous in nature. The coexistence of different RATs requires a need for Common Radio Resource Management (CRRM) to support the provision of Quality of Service (QoS) and the efficient utilization of radio resources. RAT selection algorithms are part of the CRRM algorithms. Simply, their role is to verify if an incoming call will be suitable to fit into a heterogeneous wireless network, and to decide which of the available RATs is most suitable to fit the need of the incoming call and admit it. Guaranteeing the requirements of QoS for all accepted calls and at the same time being able to provide the most efficient utilization of the available radio resources is the goal of RAT selection algorithm. The normal call admission control algorithms are designed for homogeneous wireless networks and they do not provide a solution to fit a heterogeneous wireless network which represents the NGWN. Therefore, there is a need to develop RAT selection algorithm for heterogeneous wireless network. In this paper, we propose an approach for RAT selection which includes receiving different criteria, assessing and making decisions, then selecting the most suitable RAT for incoming calls. A comprehensive survey of different RAT selection algorithms for a heterogeneous wireless network is studied.Keywords: Heterogeneous Wireless Network, RAT selection algorithms, Next Generation Wireless Network (NGWN), Beyond 3G Network, Common Radio Resource Management (CRRM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20263795 Virtualization Technology as a Tool for Teaching Computer Networks
Authors: Dalibor Dobrilovic, Borislav Odadžic
Abstract:
In this paper is being described a possible use of virtualization technology in teaching computer networks. The virtualization can be used as a suitable tool for creating virtual network laboratories, supplementing the real laboratories and network simulation software in teaching networking concepts. It will be given a short description of characteristic projects in the area of virtualization technology usage in network simulation, network experiments and engineering education. A method for implementing laboratory has also been explained, together with possible laboratory usage and design of laboratory exercises. At the end, the laboratory test results of virtual laboratory are presented as well.Keywords: Computer network simulation software, teaching networking concepts, virtual network laboratory, virtualization technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22883794 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons
Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia
Abstract:
Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.
Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15583793 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems
Authors: I. A. Farhat
Abstract:
The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.
Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32803792 A Preliminary Study of the Reconstruction of Urban Residential Public Space in the Context of the “Top-down” Construction Model in China: Based on Research of TianZiFang District in Shanghai and Residential Space in Hangzhou
Authors: Wang Qiaowei, Gao Yujiang
Abstract:
With the economic growth and rapid urbanization after the reform and openness, some of China's fast-growing cities have demolished former dwellings and built modern residential quarters. The blind, incomplete reference to western modern cities and the one-off construction lacking feedback mechanism have intensified such phenomenon, causing the citizen gradually expanded their living scale with the popularization of car traffic, and the peer-to-peer lifestyle gradually settled. The construction of large-scale commercial centers has caused obstacles to small business around the residential areas, leading to space for residents' interaction has been compressed. At the same time, the advocated Central Business District (CBD) model even leads to the unsatisfactory reconstruction of many historical blocks such as the Hangzhou Southern Song Dynasty Imperial Street. However, the popularity of historical spaces such as Wuzhen and Hongcun also indicates the collective memory and needs of the street space for Chinese residents. The evolution of Shanghai TianZiFang also proves the importance of the motivation of space participants in space construction in the context of the “top-down” construction model in China. In fact, there are frequent occurrences of “reconstruction”, which may redefine the space, in various residential areas. If these activities can be selectively controlled and encouraged, it will be beneficial to activate the public space as well as the residents’ intercourse, so that the traditional Chinese street space can be reconstructed in the context of modern cities.
Keywords: Rapid urbanization, traditional street space, space re-construction, bottom-up design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8123791 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16673790 Mobile Ad Hoc Networks and It’s Routing Protocols
Authors: Rakesh Kumar, Piush Verma, Yaduvir Singh
Abstract:
A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.
Keywords: AHP, AODV, Cryptography, EA, MANET, Optimized output.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40203789 Cost and Productivity Experiences of Pakistan with Aggregate Learning Curve
Authors: Jamshaid ur Rehman, Shahida Wizarat
Abstract:
The principal focus of this study is on the measurement and analysis of labor learnings in Pakistan. The study at the aggregate economy level focus on the labor productivity movements and at large-scale manufacturing level focus on the cost structure, with isolating the contribution of the learning curve. The analysis of S-shaped curve suggests that learnings are only below one half of aggregate learning curve and other half shows the retardation in learning, hence retardation in productivity movements. The study implies the existence of learning economies in term of cost reduction that is input cost per unit produced decreases by 0.51 percent every time the cumulative production output doubles.Keywords: Cost, Inflection Point, Learning Curve, Minima, Maxima, and Productivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17873788 Network Mobility Support in Content-Centric Internet
Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee
Abstract:
In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.
Keywords: CCN, handover, NEMO, mobility management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15353787 Improvement of Deficient Soils in Nigeria Using Bagasse Ash: A Review
Authors: Musa Alhassan, Alhaji Mohammed Mustapha
Abstract:
Review of studies carried out on the use of bagasse ash for the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizers (cement and lime), the studies generally showed improvement in the geotechnical properties of the soils, either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils, thus suggesting that using this material at large scale level in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria.Keywords: Bagasse ash, Black cotton soil, Deficient soil, Laterite, Soil improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30573786 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8263785 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments
Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa
Abstract:
Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.Keywords: Soil-Structure Interaction, RC pile, RC Tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22863784 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms
Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov
Abstract:
The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.
Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371