Search results for: BP neural network model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9568

Search results for: BP neural network model

8548 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.

Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
8547 Combinatorial Approach to Reliability Evaluation of Network with Unreliable Nodes and Unreliable Edges

Authors: Y. Shpungin

Abstract:

Estimating the reliability of a computer network has been a subject of great interest. It is a well known fact that this problem is NP-hard. In this paper we present a very efficient combinatorial approach for Monte Carlo reliability estimation of a network with unreliable nodes and unreliable edges. Its core is the computation of some network combinatorial invariants. These invariants, once computed, directly provide pure and simple framework for computation of network reliability. As a specific case of this approach we obtain tight lower and upper bounds for distributed network reliability (the so called residual connectedness reliability). We also present some simulation results.

Keywords: Combinatorial invariants, Monte Carlo simulation, reliability, unreliable nodes and unreliable edges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
8546 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature and time of extraction of each stage,  agitation speed and delay time between stages effect on efficiency of  zinc extraction from concentrate. In this research, efficiency of zinc  extraction was predicted as a function of mentioned variable by  artificial neural networks (ANN). ANN with different layer was  employed and the result show that the networks with 8 neurons in  hidden layer has good agreement with experimental data.

 

Keywords: Zinc extraction, Efficiency, Neural networks, Operating condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
8545 Protection Plan of Medium Voltage Distribution Network in Tunisia

Authors: S. Chebbi, A. Meddeb

Abstract:

The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network.

Keywords: Distribution network Gabes-Tunisia, NEPLAN©DACH, protection plan settings, selectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
8544 Behavioral Signature Generation using Shadow Honeypot

Authors: Maros Barabas, Michal Drozd, Petr Hanacek

Abstract:

A novel behavioral detection framework is proposed to detect zero day buffer overflow vulnerabilities (based on network behavioral signatures) using zero-day exploits, instead of the signature-based or anomaly-based detection solutions currently available for IDPS techniques. At first we present the detection model that uses shadow honeypot. Our system is used for the online processing of network attacks and generating a behavior detection profile. The detection profile represents the dataset of 112 types of metrics describing the exact behavior of malware in the network. In this paper we present the examples of generating behavioral signatures for two attacks – a buffer overflow exploit on FTP server and well known Conficker worm. We demonstrated the visualization of important aspects by showing the differences between valid behavior and the attacks. Based on these metrics we can detect attacks with a very high probability of success, the process of detection is however very expensive.

Keywords: behavioral signatures, metrics, network, security design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
8543 An Extension of Multi-Layer Perceptron Based on Layer-Topology

Authors: Jānis Zuters

Abstract:

There are a lot of extensions made to the classic model of multi-layer perceptron (MLP). A notable amount of them has been designed to hasten the learning process without considering the quality of generalization. The paper proposes a new MLP extension based on exploiting topology of the input layer of the network. Experimental results show the extended model to improve upon generalization capability in certain cases. The new model requires additional computational resources to compare to the classic model, nevertheless the loss in efficiency isn-t regarded to be significant.

Keywords: Learning algorithm, multi-layer perceptron, topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
8542 Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network

Authors: M. Mahdavi, M. Ismail, K. Jumari, Z. M. Hanapi

Abstract:

For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.

Keywords: Wireless sensor networks, energy efficient network, performance analysis, network coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
8541 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
8540 Information Theoretical Analysis of Neural Spiking Activity with Temperature Modulation

Authors: Young-Seok Choi

Abstract:

This work assesses the cortical and the sub-cortical neural activity recorded from rodents using entropy and mutual information based approaches to study how hypothermia affects neural activity. By applying the multi-scale entropy and Shannon entropy, we quantify the degree of the regularity embedded in the cortical and sub-cortical neurons and characterize the dependency of entropy of these regions on temperature. We study also the degree of the mutual information on thalamocortical pathway depending on temperature. The latter is most likely an indicator of coupling between these highly connected structures in response to temperature manipulation leading to arousal after global cerebral ischemia.

Keywords: Spiking activity, entropy, mutual information, temperature modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
8539 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
8538 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO

Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri

Abstract:

This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.

Keywords: DPSO, TEP, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
8537 Analysis of Network Performance Using Aspect of Quantum Cryptography

Authors: Nisarg A. Patel, Hiren B. Patel

Abstract:

Quantum cryptography is described as a point-to-point secure key generation technology that has emerged in recent times in providing absolute security. Researchers have started studying new innovative approaches to exploit the security of Quantum Key Distribution (QKD) for a large-scale communication system. A number of approaches and models for utilization of QKD for secure communication have been developed. The uncertainty principle in quantum mechanics created a new paradigm for QKD. One of the approaches for use of QKD involved network fashioned security. The main goal was point-to-point Quantum network that exploited QKD technology for end-to-end network security via high speed QKD. Other approaches and models equipped with QKD in network fashion are introduced in the literature as. A different approach that this paper deals with is using QKD in existing protocols, which are widely used on the Internet to enhance security with main objective of unconditional security. Our work is towards the analysis of the QKD in Mobile ad-hoc network (MANET).

Keywords: QKD, cryptography, quantum cryptography, network performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
8536 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks

Authors: Z. Shaaban

Abstract:

This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.

Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
8535 Multimode Dynamics of the Beijing Road Traffic System

Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun

Abstract:

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases

Keywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
8534 A Survey of Attacks and Security Requirements in Wireless Sensor Networks

Authors: Vishnu Pratap Singh Kirar

Abstract:

Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.

Keywords: Wireless Sensor Network (WSN), Wireless Network Attacks, Wireless Network Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
8533 A Review in Recent Development of Network Threats and Security Measures

Authors: Roza Dastres, Mohsen Soori

Abstract:

Networks are vulnerable devices due to their basic feature of facilitating remote access and data communication. The information in the networks needs to be kept secured and safe in order to provide an effective communication and sharing device in the web of data. Due to challenges and threats of the data in networks, the network security is one of the most important considerations in information technology infrastructures. As a result, the security measures are considered in the network in order to decrease the probability of accessing the secured data by the hackers. The purpose of network security is to protect the network and its components from unauthorized access and abuse in order to provide a safe and secured communication device for the users. In the present research work a review in recent development of network threats and security measures is presented and future research works are also suggested. Different attacks to the networks and security measured against them are discussed in order to increase security in the web of data. So, new ideas in the network security systems can be presented by analyzing the published papers in order to move forward the research field.

Keywords: Network threats, network security, security measures, firewalls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
8532 Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales

Authors: Yaping Ren, Yongkun Li

Abstract:

In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.

Keywords: Recurrent neural networks, global exponential stability, periodic solutions, distributed delays, impulses, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
8531 Analysis of Detecting Wormhole Attack in Wireless Networks

Authors: Khin Sandar Win

Abstract:

In multi hop wireless systems, such as ad hoc and sensor networks, mobile ad hoc network applications are deployed, security emerges as a central requirement. A particularly devastating attack is known as the wormhole attack, where two or more malicious colluding nodes create a higher level virtual tunnel in the network, which is employed to transport packets between the tunnel end points. These tunnels emulate shorter links in the network. In which adversary records transmitted packets at one location in the network, tunnels them to another location, and retransmits them into the network. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In this paper, we analyze wormhole attack nature in ad hoc and sensor networks and existing methods of the defending mechanism to detect wormhole attacks without require any specialized hardware. This analysis able to provide in establishing a method to reduce the rate of refresh time and the response time to become more faster.

Keywords: Ad hoc network, Sensor network, Wormhole attack, defending mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
8530 Almost Periodicity in a Harvesting Lotka-Volterra Recurrent Neural Networks with Time-Varying Delays

Authors: Yongzhi Liao

Abstract:

By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of positive almost periodic solution in a delayed Lotka-Volterra recurrent neural networks with harvesting terms. To a certain extent, our work in this paper corrects some result in recent years. Finally, an example is given to illustrate the feasibility and effectiveness of the main result.

Keywords: positive almost periodic solution, Lotka-Volterra, neural networks, Banach fixed point theorem, harvesting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
8529 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction

Authors: Tarek Aboueldahab

Abstract:

In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.

Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
8528 Service Architecture for 3rd Party Operator's Participation

Authors: F. Sarabchi, A. H. Darvishan, H. Yeganeh, H. Ahmadian

Abstract:

Next generation networks with the idea of convergence of service and control layer in existing networks (fixed, mobile and data) and with the intention of providing services in an integrated network, has opened new horizon for telecom operators. On the other hand, economic problems have caused operators to look for new source of income including consider new services, subscription of more users and their promotion in using morenetwork resources and easy participation of service providers or 3rd party operators in utilizing networks. With this requirement, an architecture based on next generation objectives for service layer is necessary. In this paper, a new architecture based on IMS model explains participation of 3rd party operators in creation and implementation of services on an integrated telecom network.

Keywords: Service model, IMS, API, Scripting language, JAIN, Parlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
8527 Design and Implementation of Security Middleware for Data Warehouse Signature Framework

Authors: Mayada AlMeghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature (DWS) Framework. The aim of using the middleware in the proposed DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: Middleware, parallel computing, data warehouse, security, group-key, high performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
8526 Virtualization Technology as a Tool for Teaching Computer Networks

Authors: Dalibor Dobrilovic, Borislav Odadžic

Abstract:

In this paper is being described a possible use of virtualization technology in teaching computer networks. The virtualization can be used as a suitable tool for creating virtual network laboratories, supplementing the real laboratories and network simulation software in teaching networking concepts. It will be given a short description of characteristic projects in the area of virtualization technology usage in network simulation, network experiments and engineering education. A method for implementing laboratory has also been explained, together with possible laboratory usage and design of laboratory exercises. At the end, the laboratory test results of virtual laboratory are presented as well.

Keywords: Computer network simulation software, teaching networking concepts, virtual network laboratory, virtualization technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
8525 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
8524 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks

Authors: Dávid Csercsik, Sándor Imre

Abstract:

The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.

Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
8523 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground

Authors: Bhim Kumar Dahal

Abstract:

Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies.  Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication.  And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.

Keywords: Embankment, ground improvement, modelling, model prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
8522 A Comparative Study of Novel Opportunistic Routing Protocols in Mobile Ad Hoc Networks

Authors: R. Poonkuzhali, M. Y. Sanavullah, M. R. Gurupriya

Abstract:

Opportunistic routing is used, where the network has the features like dynamic topology changes and intermittent network connectivity. In Delay tolerant network or Disruption tolerant network opportunistic forwarding technique is widely used. The key idea of opportunistic routing is selecting forwarding nodes to forward data packets and coordination among these nodes to avoid duplicate transmissions. This paper gives the analysis of pros and cons of various opportunistic routing techniques used in MANET.

Keywords: Expected Transmission Count (ETX), Opportunistic routing, Proactive Source Routing (PSR), throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
8521 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

In this paper, a new concept of closed-loop design for a product is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Subsequently, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluating the criteria in forward design, reverse design, and green manufacturing. A fuzzy analytic network process method is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In applications, a super matrix model is created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.

Keywords: Design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
8520 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network

Authors: A.V.Naresh Babu, S.Sivanagaraju

Abstract:

A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.

Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
8519 Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator

Authors: H. Sadjadian , H.D. Taghirad Member, A. Fatehi

Abstract:

In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.

Keywords: Forward Kinematics, Neural Networks, Numerical Solution, Parallel Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929