Search results for: algorithm symbol recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4081

Search results for: algorithm symbol recognition

3091 The New AIMD Congestion Control Algorithm

Authors: Hayder Natiq Jasem, Zuriati Ahmad Zukarnain, Mohamed Othman, Shamala Subramaniam

Abstract:

Congestion control is one of the fundamental issues in computer networks. Without proper congestion control mechanisms there is the possibility of inefficient utilization of resources, ultimately leading to network collapse. Hence congestion control is an effort to adapt the performance of a network to changes in the traffic load without adversely affecting users perceived utilities. AIMD (Additive Increase Multiplicative Decrease) is the best algorithm among the set of liner algorithms because it reflects good efficiency as well as good fairness. Our control model is based on the assumption of the original AIMD algorithm; we show that both efficiency and fairness of AIMD can be improved. We call our approach is New AIMD. We present experimental results with TCP that match the expectation of our theoretical analysis.

Keywords: Congestion control, Efficiency, Fairness, TCP, AIMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
3090 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Authors: Ashanie Guanathillake, Kithsiri Samarasinghe

Abstract:

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
3089 Estimation of Relative Self-Localization Based On Natural Landmark and an Improved SURF

Authors: Xing Xiong, Byung-Jae Choi

Abstract:

It is important for an autonomous mobile robot to know where it is in any time in an indoor environment. In this paper, we design a relative self-localization algorithm. The algorithm compare the interest point in two images and compute the relative displacement and orientation to determent the posture. Firstly, we use the SURF algorithm to extract the interest points of the ceiling. Second, in order to reduce amount of calculation, a replacement SURF is used to extract orientation and description of the interest points. At last, according to the transformation of the interest points in two images, the relative self-localization of the mobile robot will be estimated greatly.

Keywords: Relative Self-Localization Posture, SURF, Natural Landmark, Interest Point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
3088 The Performance Analysis of CSS-based Communication Systems in the Jamming Environment

Authors: Youngpo Lee, Sanghun Kim, Youngyoon Lee, Seokho Yoon

Abstract:

Due to its capability to resist jamming signals, chirp spread spectrum (CSS) technique has attracted much attention in the area of wireless communications. However, there has been little rigorous analysis for the performance of the CSS communication system in jamming environments. In this paper, we present analytic results on the performance of a CSS system by deriving symbol error rate (SER) expressions for a CSS M-ary phase shift keying (MPSK) system in the presence of broadband and tone jamming signals, respectively. The numerical results show that the empirical SER closely agrees with the analytic result.

Keywords: CSS, DM, jamming, broadband jamming, tone jamming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
3087 Robot Path Planning in 3D Space Using Binary Integer Programming

Authors: Ellips Masehian, Golnaz Habibi

Abstract:

This paper presents a novel algorithm for path planning of mobile robots in known 3D environments using Binary Integer Programming (BIP). In this approach the problem of path planning is formulated as a BIP with variables taken from 3D Delaunay Triangulation of the Free Configuration Space and solved to obtain an optimal channel made of connected tetrahedrons. The 3D channel is then partitioned into convex fragments which are used to build safe and short paths within from Start to Goal. The algorithm is simple, complete, does not suffer from local minima, and is applicable to different workspaces with convex and concave polyhedral obstacles. The noticeable feature of this algorithm is that it is simply extendable to n-D Configuration spaces.

Keywords: 3D C-space, Binary Integer Programming (BIP), Delaunay Tessellation, Robot Motion Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
3086 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
3085 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
3084 A Fast Sensor Relocation Algorithm in Wireless Sensor Networks

Authors: Yu-Chen Kuo, Shih-Chieh Lin

Abstract:

Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.

Keywords: Coverage, distributed algorithm, sensor relocation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
3083 3D Star Skeleton for Fast Human Posture Representation

Authors: Sungkuk Chun, Kwangjin Hong, Keechul Jung

Abstract:

In this paper, we propose an improved 3D star skeleton technique, which is a suitable skeletonization for human posture representation and reflects the 3D information of human posture. Moreover, the proposed technique is simple and then can be performed in real-time. The existing skeleton construction techniques, such as distance transformation, Voronoi diagram, and thinning, focus on the precision of skeleton information. Therefore, those techniques are not applicable to real-time posture recognition since they are computationally expensive and highly susceptible to noise of boundary. Although a 2D star skeleton was proposed to complement these problems, it also has some limitations to describe the 3D information of the posture. To represent human posture effectively, the constructed skeleton should consider the 3D information of posture. The proposed 3D star skeleton contains 3D data of human, and focuses on human action and posture recognition. Our 3D star skeleton uses the 8 projection maps which have 2D silhouette information and depth data of human surface. And the extremal points can be extracted as the features of 3D star skeleton, without searching whole boundary of object. Therefore, on execution time, our 3D star skeleton is faster than the “greedy" 3D star skeleton using the whole boundary points on the surface. Moreover, our method can offer more accurate skeleton of posture than the existing star skeleton since the 3D data for the object is concerned. Additionally, we make a codebook, a collection of representative 3D star skeletons about 7 postures, to recognize what posture of constructed skeleton is.

Keywords: computer vision, gesture recognition, skeletonization, human posture representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
3082 Urdu Nastaleeq Optical Character Recognition

Authors: Zaheer Ahmad, Jehanzeb Khan Orakzai, Inam Shamsher, Awais Adnan

Abstract:

This paper discusses the Urdu script characteristics, Urdu Nastaleeq and a simple but a novel and robust technique to recognize the printed Urdu script without a lexicon. Urdu being a family of Arabic script is cursive and complex script in its nature, the main complexity of Urdu compound/connected text is not its connections but the forms/shapes the characters change when it is placed at initial, middle or at the end of a word. The characters recognition technique presented here is using the inherited complexity of Urdu script to solve the problem. A word is scanned and analyzed for the level of its complexity, the point where the level of complexity changes is marked for a character, segmented and feeded to Neural Networks. A prototype of the system has been tested on Urdu text and currently achieves 93.4% accuracy on the average.

Keywords: Cursive Script, OCR, Urdu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
3081 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
3080 OCR For Printed Urdu Script Using Feed Forward Neural Network

Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan

Abstract:

This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.

Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035
3079 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
3078 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data

Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon

Abstract:

Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.

Keywords: Ant colony system, biological data, clustering, DNA chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
3077 Parallel-Distributed Software Implementation of Buchberger Algorithm

Authors: Praloy Kumar Biswas, Prof. Dipanwita Roy Chowdhury

Abstract:

Grobner basis calculation forms a key part of computational commutative algebra and many other areas. One important ramification of the theory of Grobner basis provides a means to solve a system of non-linear equations. This is why it has become very important in the areas where the solution of non-linear equations is needed, for instance in algebraic cryptanalysis and coding theory. This paper explores on a parallel-distributed implementation for Grobner basis calculation over GF(2). For doing so Buchberger algorithm is used. OpenMP and MPI-C language constructs have been used to implement the scheme. Some relevant results have been furnished to compare the performances between the standalone and hybrid (parallel-distributed) implementation.

Keywords: Grobner basis, Buchberger Algorithm, Distributed- Parallel Computation, OpenMP, MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
3076 Identifying the Kinematic Parameters of Hexapod Machine Tool

Authors: M. M. Agheli, M. J. Nategh

Abstract:

Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.

Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
3075 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts

Authors: Lin Cheng, Zijiang Yang

Abstract:

Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.

Keywords: program synthesis, flow chart, specification, graph recognition, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
3074 Self-evolving Neural Networks Based On PSO and JPSO Algorithms

Authors: Abdussamad Ismail, Dong-Sheng Jeng

Abstract:

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Keywords: Neural networks, Topology evolution, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
3073 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

Authors: Mona Soliman Habib

Abstract:

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
3072 A Novel Methodology Proposed for Optimizing the Degree of Hybridization in Parallel HEVs using Genetic Algorithm

Authors: K. Varesi, A. Radan

Abstract:

In this paper, a new Genetic Algorithm (GA) based methodology is proposed to optimize the Degree of Hybridization (DOH) in a passenger parallel hybrid car. At first step, target parameters for the vehicle are decided and then using ADvanced VehIcle SimulatOR (ADVISOR) software, the variation pattern of these target parameters, across the different DOHs, is extracted. At the next step, a suitable cost function is defined and is optimized using GA. In this paper, also a new technique has been proposed for deciding the number of battery modules for each DOH, which leads to a great improvement in the vehicle performance. The proposed methodology is so simple, fast and at the same time, so efficient.

Keywords: Degree of Hybridization (DOH), Electric Motor, Emissions, Fuel Economy, Genetic Algorithm (GA), Hybrid ElectricVehicle (HEV), Vehicle Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
3071 Fast Segmentation for the Piecewise Smooth Mumford-Shah Functional

Authors: Yingjie Zhang

Abstract:

This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions u + and u - . In our scheme, furthermore, the piecewise-constant MS functional is integrated to generate the extra force based on a temporary image that is dynamically created by computing the union of u + and u - during segmenting. Therefore, some drawbacks of the original algorithm, such as smaller objects generated by noise and local minimal problem also are eliminated or improved. The resulting algorithm has been implemented in Matlab and Visual Cµ, and demonstrated efficiently by several cases.

Keywords: Active contours, energy minimization, image segmentation, level sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
3070 Action Recognition in Video Sequences using a Mealy Machine

Authors: L. Rodriguez-Benitez, J. Moreno-Garcia, J.J. Castro-Schez, C. Solana, L. Jimenez

Abstract:

In this paper the use of sequential machines for recognizing actions taken by the objects detected by a general tracking algorithm is proposed. The system may deal with the uncertainty inherent in medium-level vision data. For this purpose, fuzzification of input data is performed. Besides, this transformation allows to manage data independently of the tracking application selected and enables adding characteristics of the analyzed scenario. The representation of actions by means of an automaton and the generation of the input symbols for finite automaton depending on the object and action compared are described. The output of the comparison process between an object and an action is a numerical value that represents the membership of the object to the action. This value is computed depending on how similar the object and the action are. The work concludes with the application of the proposed technique to identify the behavior of vehicles in road traffic scenes.

Keywords: Approximate reasoning, finite state machines, video analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
3069 Implementing Authentication Protocol for Exchanging Encrypted Messages via an Authentication Server Based on Elliptic Curve Cryptography with the ElGamal-s Algorithm

Authors: Konstantinos Chalkias, George Filiadis, George Stephanides

Abstract:

In this paper the authors propose a protocol, which uses Elliptic Curve Cryptography (ECC) based on the ElGamal-s algorithm, for sending small amounts of data via an authentication server. The innovation of this approach is that there is no need for a symmetric algorithm or a safe communication channel such as SSL. The reason that ECC has been chosen instead of RSA is that it provides a methodology for obtaining high-speed implementations of authentication protocols and encrypted mail techniques while using fewer bits for the keys. This means that ECC systems require smaller chip size and less power consumption. The proposed protocol has been implemented in Java to analyse its features and vulnerabilities in the real world.

Keywords: Elliptic Curve Cryptography, ElGamal, authentication protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
3068 Finding an Optimized Discriminate Function for Internet Application Recognition

Authors: E. Khorram, S.M. Mirzababaei

Abstract:

Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
3067 Feedback-Controlled Server for Scheduling Aperiodic Tasks

Authors: Shinpei Kato, Nobuyuki Yamasaki

Abstract:

This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.

Keywords: Real-Time Systems, Aperiodic Task Scheduling, Feedback-Control Scheduling, Total Bandwidth Server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
3066 Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
3065 Density Clustering Based On Radius of Data (DCBRD)

Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
3064 Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction

Authors: H. Shayeghi, M. Mahdavi, A. Kazemi

Abstract:

Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, transmission expansion planning considering network adequacy restriction has not been investigated. Thus, in this paper, STNEP problem is being studied considering network adequacy restriction using discrete particle swarm optimization (DPSO) algorithm. The goal of this paper is obtaining a configuration for network expansion with lowest expansion cost and a specific adequacy. The proposed idea has been tested on the Garvers network and compared with the decimal codification genetic algorithm (DCGA). The results show that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is more than DCGA approach.

Keywords: DPSO algorithm, Adequacy restriction, STNEP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
3063 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: Multi variable systems, order reduction, stability equation method, SRAM, time domain characteristics, ISE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
3062 Vehicle Velocity Estimation for Traffic Surveillance System

Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain

Abstract:

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Keywords: camera calibration, object tracking, velocity estimation, video image processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4456