Search results for: Wireless body area networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5273

Search results for: Wireless body area networks

4283 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong

Abstract:

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
4282 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: Body composition, diet, exercise, protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
4281 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based On WiMAX Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non_real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
4280 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. H. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: Statistical mechanics, Nonlocal separable potential, three-body interaction, Faddeev equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
4279 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting

Authors: I. Falconett, K. Nagasaka

Abstract:

This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.

Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
4278 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand

Authors: Hyoup-Sang Yoon

Abstract:

Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.

Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
4277 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach

Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi

Abstract:

Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.

Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
4276 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
4275 Effect of Distributed Generators on the Optimal Operation of Distribution Networks

Authors: J. Olamaei , T. Niknam, M. Nayeripour

Abstract:

This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.

Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
4274 Effects of Input Speed on the Dynamic Response of Planar Multi-body Systems with Differently Located Frictionless Revolute Clearance Joints

Authors: Onesmus Muvengei, John Kihiu, Bernard Ikua

Abstract:

This paper numerically investigates the effects of input speed on the overall dynamic characteristics of a multi-body system with differently located revolute clearance joints without friction. A typical planar slider-crank mechanism is used as a demonstration case in which the effects of the input speed on the dynamic performance of the mechanism with a revolute clearance joint between the crank and connecting rod, and between the connecting rod and slider are separately investigated with comprehensive observations numerically presented. It is observed that, changing the driving speed of a multibody system makes the behavior of the system to change from either periodic to chaotic, or chaotic to periodic depending on which joint has clearance. The location of the clearance revolute joint and the operating speed of a multi-body system play a crucial role in predicting accurately the dynamic responses of the system. Therefore the dynamic behavior of one clearance revolute joint cannot be used as a general case for a mechanical system.

Keywords: Chaotic behavior, Contact-impact forces, Dynamic response, Multi-body mechanical system, Periodic behavior, Poincare maps, Quasi-periodic behavior, Revolute clearance joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
4273 Signalling Cost Analysis of PDE-NEMO

Authors: Kamarularifin Abd Jalil, John Dunlop

Abstract:

A Personal Distributed Environment (PDE) is an example of an IP-based system architecture designed for future mobile communications. In a single PDE, there exist several Subnetworks hosting devices located across the infrastructure, which will inter-work with one another through the coordination of a Device Management Entity (DME). Some of these Sub-networks are fixed and some are mobile. In order to support Mobile Sub-networks mobility in the PDE, the PDE-NEMO protocol was proposed. This paper discussed the signalling cost analysis of PDE-NEMO by use of a detailed simulation model. The paper started with the introduction of the protocol, followed by the experiments and results and then followed by discussions.

Keywords: Mobile Network, PDE-NEMO, Signallling Cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
4272 A Block Cipher for Resource-Constrained IoT Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a layer between the encryption and decryption processes.

Keywords: Internet of Things, IoT, cryptography block cipher, s-box, key management, IoT security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 545
4271 Water Budget in High Drought-Borne Area in Jaffna District, Sri Lanka during Dry Season

Authors: R. Kandiah, K. Miyamoto

Abstract:

In Sri Lanka, the Jaffna area is a high drought affected area and depends mainly on groundwater aquifers for water needs. Water for daily activities is extracted from wells. As households manually extract water from the wells, it is not drawn from mid evening to early morning. The water inflow at night provides the maximum water level that decreases during the daytime due to extraction. The storage volume of water in wells is limited or at its lowest level during the dry season. This study analyzes the domestic water budget during the dry season in the Jaffna area. In order to evaluate the water inflow rate into wells, storage volume and extraction volume from wells over time, water pressure is measured at the bottom of three wells, which are located in coastal area denoted as well A, in nonspecific area denoted as well B, and agricultural area denoted as well C. The water quality at the wells A, B, and C, are mostly fresh, modest fresh, and saline respectively. From the monitoring, we can find that the daily inflow amount of water into the wells and daily water extraction depend on each other, that is, higher extraction yields higher inflow. And, in the dry season, the daily inflow volume and the daily extraction volume of each well are almost in balance.

Keywords: Domestic water, water balance, water budget, ground water, shallow well.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
4270 First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Authors: Frank Emmert-Streib, Matthias Dehmer

Abstract:

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.

Keywords: Dynamic Bayesian networks, microarray data, structure learning, Markov chain Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
4269 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
4268 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Authors: Petar Halachev

Abstract:

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

Keywords: artificial neural network, balanced scorecard, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
4267 Evolutionary Dynamics on Small-World Networks

Authors: Jan Rychtar, Brian Stadler

Abstract:

We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.

Keywords: evolutionary dynamics, small-world networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
4266 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs. 

Keywords: cushion, image processing, pressure mapping system, wheelchair

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
4265 Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks

Authors: Tin Hninn Hninn Maung

Abstract:

This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.

Keywords: Hand gesture recognition, Orientation Histogram, Myanmar Alphabet Language, Perceptronnetwork, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4700
4264 Correlation between the Sowing Date and the Yield of Maize on Chernozem Soil, in Connection with the Leaf Area Index and the Photosynthesis

Authors: E. Bene

Abstract:

Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Centre for Agricultural Sciences of University of Debrecen, in 2012-2014. The paper contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences the leaf area index and the activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons. The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying the effects of each other, develop average yields.

Keywords: Sowing date, hybrid, leaf area index, photosynthetic capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
4263 Detecting Earnings Management via Statistical and Neural Network Techniques

Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie

Abstract:

Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.

Keywords: Earnings management, generalized regression neural networks, linear regression, multi-layer perceptron, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
4262 Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method

Authors: Murad A, Baker H, Mahmoud S, Gabr A

Abstract:

The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.

Keywords: groundwater, shallow seismic method, United Arab Emirates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
4261 The Effect of Postural Anomalies on SAQ, Muscular Strength and Flexibility Performance of the Semipro Soccer Athletes

Authors: Rahmat A, Radin Rafeeuddin R. D., Norasrudin S., Mastura M.

Abstract:

The objective of the study is to investigate the effect of a footballer-s postural on selected physical fitness components. Twenty-one (21) subjects of the university male footballers under the Sport Excellence Center programme were photographed using qualitative analysis. The postural variables were stratified manually into normal and anomalies group and their flexibility, strength and SAQ performance were compared using the Mann-Whitney Test. The AROM assessment and SAQ test reported no significance difference (Z=-.398, p=0.711, p>0.05), similar to the lower body strength was shown with no significance different (Z=-.493, p=0.640, p>0.05). In contrast, only 1 RM strength test for the upper body strength test shown with a significance different (Z=- 2.537, p=0.009, p<0.05) the. Hence, the Body posture among the football athletes with anomalies does not influence selected physical fitness components. This study has proven, that postural anomalies will not affect or influence the physical performance the respective athletes.

Keywords: Postural Analysis, Anomalies, Flexibility, Strength, SAQ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
4260 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Soil organic carbon, modeling, neural networks, CDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
4259 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
4258 Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity

Authors: Vladyslav Povoroznyuk, Nataliia Dzerovych, Larysa Martynyuk, Tetiana Kovtun

Abstract:

Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is sitespecific. This study is aimed at determining the connection between the bone mineral density (BMD) and trabecular bone score (TBS) parameters in Ukrainian women suffering from obesity. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group A included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of <30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to nonobese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50- 59, 60-69 and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the nonobese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%.

Keywords: Bone mineral density, trabecular bone score, obesity, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
4257 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model

Authors: Vladislav N. Dumachev, Vladimir A. Rodin

Abstract:

By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractals

Keywords: bifurcation, chaos, dynamics of populations, fractals

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
4256 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students

Authors: Philippe A. Martin

Abstract:

This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.

Keywords: knowledge sharing, knowledge evaluation, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
4255 Body Mass Index, Components of Metabolic Syndrome and Hyperuricemia among Women in Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Galina Dubetska, Roksolana Povoroznyuk

Abstract:

In recent years, the problem of hyperuricemia is getting a particular importance due to its increased incidence in the world population. The aim of this study was to determine uriс acid level in blood serum, incidence of hyperuricemia among women in postmenopausal period and their association with body mass index and some components of metabolic syndrome (triglyceride, cholesterol, systolic and diastolic pressure). We examined 412 women in postmenopausal period. They were divided in to the following groups: I group (BMI = 18,5-24,9), II group (BMI = 25,0-29,9), III group (BMI = 30,0-34,9), IV group (BMI > 35). We determined uric acid level among women during postmenopausal period depending on their body mass index. The higher level of uric acid was found in patients with the maximal body mass index (BMI > 35). In the I group it was 277,52 ± 8,40; in the II group – 286,81 ± 7,79; in the III group – 291,81 ± 7,56; in the IV group – 327,17 ± 12,17. Incidence of hyperuricemia among women in the I group was 10,2%, in the II group – 15,9%; in the III group – 21,2%, in the IV group – 34,2%. We found an interdependence between an uric acid level and BMI in the examined women (r = 0,21, p < 0,05). We determined that the highest level of triglyceride (F = 18,62, p < 0,05), cholesterol (F = 3,64, p < 0,05), atherogenic coefficient (F = 22,64, p < 0,05), systolic (F = 10,5, p < 0,05) and diastolic pressure (F = 4,30, p < 0,05) was among women with hyperuricemia. It was an interdependence between an uric acid level and triglyceride (r = 0,26, p < 0,05), atherogenic coefficient (r = 0,24, p < 0,05) among women in postmenopausal period.

Keywords: Hyperuricemia, uric acid, body mass index, metabolic syndrome, triglyceride, cholesterol, atherogenic coefficient, systolic and diastolic pressure, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
4254 Digital Social Networks: Examining the Knowledge Characteristics

Authors: Nurul Aini M. Nordan, Ahmad I. Z. Abidin, Ahmad K. Mahmood, Noreen I. Arshad

Abstract:

In today-s information age, numbers of organizations are still arguing on capitalizing the values of Information Technology (IT) and Knowledge Management (KM) to which individuals can benefit from and effective communication among the individuals can be established. IT exists in enabling positive improvement for communication among knowledge workers (k-workers) with a number of social network technology domains at workplace. The acceptance of digital discourse in sharing of knowledge and facilitating the knowledge and information flows at most of the organizations indeed impose the culture of knowledge sharing in Digital Social Networks (DSN). Therefore, this study examines whether the k-workers with IT background would confer an effect on the three knowledge characteristics -- conceptual, contextual, and operational. Derived from these three knowledge characteristics, five potential factors will be examined on the effects of knowledge exchange via e-mail domain as the chosen query. It is expected, that the results could provide such a parameter in exploring how DSN contributes in supporting the k-workers- virtues, performance and qualities as well as revealing the mutual point between IT and KM.

Keywords: Digital social networks, e-mail, knowledge management, knowledge worker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374