Search results for: three dimensional finite element modelling.
2345 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem
Authors: H. Taghvafard, G. H. Erjaee
Abstract:
A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23852344 Nonlinear Time-History Analysis of 3-Dimensional Semi-rigid Steel Frames
Authors: Phu-Cuong Nguyen, Seung-Eock Kim
Abstract:
This paper presents nonlinear elastic dynamic analysis of 3-D semi-rigid steel frames including geometric and connection nonlinearities. The geometric nonlinearity is considered by using stability functions and updating geometric stiffness matrix. The nonlinear behavior of the steel beam-to-column connection is considered by using a zero-length independent connection element comprising of six translational and rotational springs. The nonlinear dynamic equilibrium equations are solved by the Newmark numerical integration method. The nonlinear time-history analysis results are compared with those of previous studies and commercial SAP2000 software to verify the accuracy and efficiency of the proposed procedure.Keywords: Geometric nonlinearity, nonlinear time-historyanalysis, semi-rigid connection, stability functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39542343 Automatic Vehicle Location Systems
Authors: S.A. Mahdavifar, G.R. Sotudeh., K. Heydari
Abstract:
In this article, a single application is suggested to determine the position of vehicles using Geographical Information Systems (GIS) and Geographical Position Systems (GPS). The part of the article material included mapping three dimensional coordinates to two dimensional coordinates using UTM or LAMBERT geographical methods, and the algorithm of conversion of GPS information into GIS maps is studied. Also, suggestions are given in order to implement this system based on web (called web based systems). To apply this system in IRAN, related official in this case are introduced and their duties are explained. Finally, economy analyzed is assisted according to IRAN communicational system.
Keywords: GIS-GPS-UTM-LAMBERT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14082342 Response of Buildings with Soil-Structure Interaction with Varying Soil Types
Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar
Abstract:
Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multistorey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.
Keywords: Dynamic response, multi-storey building, Soil-Structure Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41642341 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network
Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi
Abstract:
In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18542340 Simulation Method for Determining the Thermally Induced Displacement of Machine Tools – Experimental Validation and Utilization in the Design Process
Abstract:
A novel simulation method to determine the displacements of machine tools due to thermal factors is presented. The specific characteristic of this method is the employment of original CAD data from the design process chain, which is interpreted by an algorithm in terms of geometry-based allocation of convection and radiation parameters. Furthermore analogous models relating to the thermal behaviour of machine elements are automatically implemented, which were gained by extensive experimental testing with thermography imaging. With this a transient simulation of the thermal field and in series of the displacement of the machine tool is possible simultaneously during the design phase. This method was implemented and is already used industrially in the design of machining centres in order to improve the quality of herewith manufactured workpieces.
Keywords: Accuracy, design process, finite element analysis, machine tools, thermal simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20832339 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.
Keywords: Interface damping layer, steel frame, seismic, FRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18412338 In Vitro Study of Coded Transmission in Synthetic Aperture Ultrasound Imaging Systems
Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski
Abstract:
In the paper the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging is presented. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Moreover signal-to-noise ratio and penetration depth are improved while maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16- bit Golay coded sequences at nominal frequency 4 MHz was used. To generate a spherical wave covering the full image region a single element transmission aperture was used and all the elements received the echo signals. The comparison of 2D ultrasound images of the tissue mimicking phantom and in vitro measurements of the beef liver is presented to illustrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.Keywords: Golay coded sequences, radiation pattern, signal processing, synthetic aperture, ultrasound imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16752337 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22542336 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD
Authors: Alaa A. Osman, Amgad M. Bayoumy, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil
Abstract:
In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Euler equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-offreedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters and wing pressure distribution during the store separation are compared for every grid size with published experimental data.
Keywords: CFD Modelling, Quasi-steady Flow, Moving-body Trajectories, Transonic Store Separation, Moving-body Trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29872335 Three-Dimensional Modeling of a Twisted-Blade Darrieus Vertical-Axis Wind Turbine
Authors: Three-Dimensional Modeling of a Twisted-Blade Darrieus Vertical-Axis Wind Turbine
Abstract:
A complete CAD procedure to model a twisted-bladed vertical-axis wind turbine (VAWT) is presented with the aim of determining some practical guidelines to be used for the generation of an easily-meshable CAD geometry to be adopted as the basis of both CFD and FEM numerical simulations.Keywords: Vertical-axis wind turbine (VAWT), twisted blade, CAD, 3D modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47322334 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9952333 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink
Authors: Zhang Lei, Liu Min, Liu Botao
Abstract:
In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.Keywords: heat transfer, heat sink, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18392332 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems
Authors: B. I. Yun
Abstract:
A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.Keywords: Axisymmetric elasticity, boundary element method, dual-reciprocity method, Laplace transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712331 3D Shape Modelling of Left Ventricle: Towards Correlation of Myocardial Scintigraphy Data and Coronarography Result
Authors: A. Ben Abdallah, H. Essabbah, M. H. Bedoui
Abstract:
The myocardial sintigraphy is an imaging modality which provides functional informations. Whereas, coronarography modality gives useful informations about coronary arteries anatomy. In case of coronary artery disease (CAD), the coronarography can not determine precisely which moderate lesions (artery reduction between 50% and 70%), known as the “gray zone", are haemodynamicaly significant. In this paper, we aim to define the relationship between the location and the degree of the stenosis in coronary arteries and the observed perfusion on the myocardial scintigraphy. This allows us to model the impact evolution of these stenoses in order to justify a coronarography or to avoid it for patients suspected being in the gray zone. Our approach is decomposed in two steps. The first step consists in modelling a coronary artery bed and stenoses of different location and degree. The second step consists in modelling the left ventricle at stress and at rest using the sphercical harmonics model and myocardial scintigraphic data. We use the spherical harmonics descriptors to analyse left ventricle model deformation between stress and rest which permits us to conclude if ever an ischemia exists and to quantify it.
Keywords: Spherical harmonics model, vascular bed, 3D reconstruction, left ventricle, myocardial scintigraphy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17942330 Fatigue Crack Initiation and Propagation through Residual Stress Field
Authors: M. Benachour, N. Benachour, M. Benguediab
Abstract:
In this paper fatigue crack initiation and propagation in notched plate under constant amplitude loading through tensile residual stress field of 2024 T351 Al-alloy plate were investigated. Residual stress field was generated by plastic deformation using finite element method (FEM) where isotropic hardening in Von Mises model was applied. Simulation of fatigue behavior was made on AFGROW code. It was shown that the fatigue crack initiation and propagation were affected by level of residual stress filed. In this investigation, the presence of tensile residual stresses at notch (hole) reduces considerably the total fatigue life. It was shown that the decreasing in stress reduces the fatigue crack growth rates.
Keywords: Residual stress, fatigue crack initiation, fatigue crack growth, Al-alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27182329 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure
Authors: M. Battira, R. Bessaih
Abstract:
We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15512328 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942327 Comparative Analysis of Vibration between Laminated Composite Plates with and without Holes under Compressive Loads
Authors: Bahi-Eddine Lahouel, Mohamed Guenfoud
Abstract:
In this study, a vibration analysis was carried out of symmetric angle-ply laminated composite plates with and without square hole when subjected to compressive loads, numerically. A buckling analysis is also performed to determine the buckling load of laminated plates. For each fibre orientation, the compression load is taken equal to 50% of the corresponding buckling load. In the analysis, finite element method (FEM) was applied to perform parametric studies, the effects of degree of orthotropy and stacking sequence upon the fundamental frequencies and buckling loads are discussed. The results show that the presence of a constant compressive load tends to reduce uniformly the natural frequencies for materials which have a low degree of orthotropy. However, this reduction becomes non-uniform for materials with a higher degree of orthotropy.Keywords: Vibration, Buckling, Cutout, Laminated composite, FEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20542326 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging
Authors: HoYoung Son, Ki Young Kim, Woo Young Jung
Abstract:
This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.Keywords: Weir, FEM, concrete, fragility, aging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9192325 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution
Authors: T. Zitoun, M. Bouhadef
Abstract:
When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.Keywords: Free-surface wave, inviscid fluid, analytical solution, hydraulic channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7972324 Innovation and Analysis of Vibrating Fork Level Switch
Authors: Kuen-Ming Shu, Cheng-Yu Chen
Abstract:
A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.Keywords: Vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13372323 Business Domain Modelling Using an Integrated Framework
Authors: Mohammed Salahat, Steve Wade
Abstract:
This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework use SSM as a guiding methodology within which we have embedded a sequence of design tasks based on the UML leading to the implementation of a software system using the Naked Objects framework. This framework have been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study “Information Retrieval System for academic research” is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modelling. The framework is overviewed and justified as multimethodology using Mingers multimethodology ideas.Keywords: SSM, UML, domain-driven design, soft domaindriven design, naked objects, soft language, information retrieval, multimethodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17772322 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uniaxial tension equibiaxial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.Keywords: Chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28282321 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28842320 A Self-Consistent Scheme for Elastic-Plastic Asperity Contact
Authors: Xu Jianguo
Abstract:
In this paper, a generalized self-consistent scheme, or “three phase model", is used to set up a micro-mechanics model for rough surface contact with randomly distributed asperities. The dimensionless average real pressure p is obtained as function of the ratio of the real contact area to the apparent contact area, 0 A / A r . Both elastic and plastic materials are considered, and the influence of the plasticity of material on p is discussed. Both two-dimensional and three-dimensional rough surface contact problems are considered.
Keywords: Contact mechanics, plastic deformation, self-consistent scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17562319 New Recursive Representations for the Favard Constants with Application to the Summation of Series
Authors: Snezhana G. Gocheva-Ilieva, Ivan H. Feschiev
Abstract:
In this study integral form and new recursive formulas for Favard constants and some connected with them numeric and Fourier series are obtained. The method is based on preliminary integration of Fourier series which allows for establishing finite recursive representations for the summation. It is shown that the derived recursive representations are numerically more effective than known representations of the considered objects.Keywords: Effective summation of series, Favard constants, finite recursive representations, Fourier series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13452318 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading
Authors: Y. S. Tai, M. Y. Huang, H. T. Hu
Abstract:
The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.
Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25242317 Preliminary Study on Fixture Layout Optimization Using Element Strain Energy
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.Keywords: Fixture layout, optimization, strain energy, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15522316 Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper
Authors: Sh. Foroughi, V. Karamzadeh, M. Packirisamy
Abstract:
This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.
Keywords: Electro thermal actuator, MEMS, Microgripper, MOEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701