Search results for: renewable energy load forecasting.
3315 Performance Analysis of MC-SS for the Indoor BPLC Systems
Authors: Justinian Anatory
Abstract:
power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.Keywords: Communication channel model; Broadband Powerlinecommunication; Branched network; OFDM; Delay Spread, MCSS;impulsive noise; load impedance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16063314 Visualising Energy Efficiency Landscape
Authors: Hairulliza M. Judi, Soon Y. Chee
Abstract:
This paper discusses the landscape design that could increase energy efficiency in a house. By planting trees in a house compound, the tree shades prevent direct sunlight from heating up the building, and it enables cooling off the surrounding air. The requirement for air-conditioning could be minimized and the air quality could be improved. During the life time of a tree, the saving cost from the mentioned benefits could be up to US $ 200 for each tree. The project intends to visually describe the landscape design in a house compound that could enhance energy efficiency and consequently lead to energy saving. The house compound model was developed in three dimensions by using AutoCAD 2005, the animation was programmed by using LightWave 3D softwares i.e. Modeler and Layout to display the tree shadings in the wall. The visualization was executed on a VRML Pad platform and implemented on a web environment.Keywords: Tree planting, tree shading, energy efficiency, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17003313 Shading Percentage Effects on Energy Consumption for Bahraini Residential Buildings
Authors: Saad F. Al Nuaimi
Abstract:
Energy consumption is a very important topic these days especially regarding air conditioning in residential buildings, since this takes the biggest amount of energy in buildings total consumption, residential buildings constitute the biggest percentage of energy consumption in Bahrain. This research reflects on the effects of shading percentage in different solar orientations on the energy consumption inside residential buildings (domestic dwellings). The research as found that, there are different effects of shading in changing building orientation: • 0.69% for the shading percentage 25% when the building is oriented to the north (0º); • 18.59% for 75% of shading in north-west orientation (325º); • The best effect for shading is in north-west orientation (315º); • The less effect for shading was in case of the building orientation is the north (0º).Keywords: Bahraini buildings, Building shading, energy consumption, residential buildings, shading effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19243312 Wind Speed Data Analysis using Wavelet Transform
Authors: S. Avdakovic, A. Lukac, A. Nuhanovic, M. Music
Abstract:
Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.Keywords: Wind potential, Wind speed data, Wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26323311 DC Link Floating for Grid Connected PV Converters
Authors: Attila Balogh, Eszter Varga, István Varjasi
Abstract:
Nowadays there are several grid connected converter in the grid system. These grid connected converters are generally the converters of renewable energy sources, industrial four quadrant drives and other converters with DC link. These converters are connected to the grid through a three phase bridge. The standards prescribe the maximal harmonic emission which could be easily limited with high switching frequency. The increased switching losses can be reduced to the half with the utilization of the wellknown Flat-top modulation. The suggested control method is the expansion of the Flat-top modulation with which the losses could be also reduced to the half compared to the Flat-top modulation. Comparing to traditional control these requirements can be simultaneously satisfied much better with the DLF (DC Link Floating) method.Keywords: DC link floating, high efficiency, PV converter, control method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22563310 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building
Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert
Abstract:
Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.
Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9923309 Investigating the Effect of Refinancing on Financial Behavior of Energy Efficiency Projects
Authors: Zohreh Soltani, Seyedmohammadhossein Hosseinian
Abstract:
Reduction of energy consumption in built infrastructure, through the installation of energy-efficient technologies, is a major approach to achieving sustainability. In practice, the viability of energy efficiency projects strongly depends on the cost reimbursement and profitability. These projects are subject to failure if the actual cost savings do not reimburse the project cost promptly. In such cases, refinancing could be a solution to benefit from the long-term returns of the project, if implemented wisely. However, very little is still known about the effect of refinancing options on financial performance of energy efficiency projects. In order to fill this gap, the present study investigates the financial behavior of energy efficiency projects with focus on refinancing options, such as Leveraged Loans. A System Dynamics (SD) model is introduced, and the model application is presented using an actual case-study data. The case study results indicate that while high-interest start-ups make using Leveraged Loan inevitable, refinancing can rescue the project and bring about profitability. This paper also presents some managerial implications of refinancing energy efficiency projects based on the case-study analysis. Results of this study help to implement financially viable energy efficiency projects so that the community could benefit from their environmental advantages widely.Keywords: Energy efficiency projects, leveraged loan, refinancing, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12183308 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers
Authors: Bachir Chemani, Rachid Halfaoui
Abstract:
The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb.
The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.
Keywords: Textile, cotton, pressure, venous ulcers, elastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17493307 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems
Authors: Dae-Hee Son, Soon-Ryul Nam
Abstract:
The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.
Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22073306 Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach
Authors: Azadeh Maroufmashat, Sourena Sattari Khavas, Halle Bakhteeyar
Abstract:
Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.
Keywords: Multi objective optimization, DER systems, Energy hub, Cost, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24663305 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems
Authors: Jalil Boudjadar
Abstract:
Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.Keywords: Time-critical systems, multicore systems, schedulability analysis, performance, memory interference, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4673304 Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting
Authors: Waleed S. Alwaneen
Abstract:
In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as Campylobacter, Salmonella sp. and Escherichia coli cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces.Keywords: Fruit beetle, waxworms, tiger worms, waste conditioning, composting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9203303 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review
Authors: Ashwini V. Chavan, Sukhanand S. Bhosale
Abstract:
Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.
Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6523302 Design and Analysis of Two-Phase Boost DC-DC Converter
Authors: Taufik Taufik, Tadeus Gunawan, Dale Dolan, Makbul Anwari
Abstract:
Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results from hardware measurement of the boost converter demonstrates the benefits of using multiphase. Results from the hardware prototype of the 2-phase boost converter further show the potential extension of multiphase beyond its commonly used low voltage high current domains.
Keywords: Multiphase, boost converter, power electronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47053301 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House
Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono
Abstract:
The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.
Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213300 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital
Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis
Abstract:
Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.Keywords: Energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8433299 Wireless Building Monitoring and Control System
Authors: J.-P. Skön, M. Johansson, O. Kauhanen, M. Raatikainen, K. Leiviskä, M. Kolehmainen
Abstract:
The building sector is the largest energy consumer and CO2 emitter in the European Union (EU) and therefore the active reduction of energy consumption and elimination of energy wastage are among the main goals in it. Healthy housing and energy efficiency are affected by many factors which set challenges to monitoring, control and research of indoor air quality (IAQ) and energy consumption, especially in old buildings. These challenges include measurement and equipment costs, for example. Additionally, the measurement results are difficult to interpret and their usage in the ventilation control is also limited when taking into account the energy efficiency of housing at the same time. The main goal of this study is to develop a cost-effective building monitoring and control system especially for old buildings. The starting point or keyword of the development process is a wireless system; otherwise the installation costs become too high. As the main result, this paper describes an idea of a wireless building monitoring and control system. The first prototype of the system has been installed in 10 residential buildings and in 10 school buildings located in the City of Kuopio, Finland.Keywords: Energy efficiency, Indoor air quality, Monitoring system, Building automation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18073298 Single Phase 13-Level D-STATCOM Inverter with Distributed System
Authors: R. Kamalakannan, N. Ravi Kumar
Abstract:
The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.Keywords: FACTS devices, distributed-Static synchronous compensators, DSTATCOM, total harmonics elimination, modular multilevel converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14543297 Architecture Performance-Related Design Based on Graphic Parameterization
Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding
Abstract:
Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.
Keywords: Graphic parameterization, green building design, mathematical model, U-shaped buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8563296 Modeling of Plasticity of Clays Submitted to Compression Test
Authors: Otávio J.U. Flores, Fernando A. Andrade, Dachamir Hotza, Hazim A. Al-Qureshi
Abstract:
In the forming of ceramic materials the plasticity concept is commonly used. This term is related to a particular mechanical behavior when clay is mixed with water. A plastic ceramic material shows a permanent strain without rupture when a compressive load produces a shear stress that exceeds the material-s yield strength. For a plastic ceramic body it observes a measurable elastic behavior before the yield strength and when the applied load is removed. In this work, a mathematical model was developed from applied concepts of the plasticity theory by using the stress/strain diagram under compression.Keywords: Plasticity, clay, modeling, coefficient of friction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21203295 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading
Authors: Laurent Pitteloud, Jörg Meier
Abstract:
Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were successfully implemented for several high-rise buildings worldwide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be determined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better understanding of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measurements shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measurements are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.
Keywords: Dynamic loading, high-frequency monitoring, piled raft foundations, wind loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8023294 The Gasification of Fructose in Supercritical Water
Authors: Shyh-Ming Chern, H. Y. Cheng
Abstract:
Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.
Keywords: Biomass, Fructose, Gasification, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20353293 Modeling and Simulation of Dynamic Voltage Restorer for Mitigation of Voltage Sags
Authors: S. Ganesh, L. Raguraman, E. Anushya, J. krishnasree
Abstract:
Voltage sags are the most common power quality disturbance in the distribution system. It occurs due to the fault in the electrical network or by the starting of a large induction motor and this can be solved by using the custom power devices such as Dynamic Voltage Restorer (DVR). In this paper DVR is proposed to compensate voltage sags on critical loads dynamically. The DVR consists of VSC, injection transformers, passive filters and energy storage (lead acid battery). By injecting an appropriate voltage, the DVR restores a voltage waveform and ensures constant load voltage. The simulation and experimental results of a DVR using MATLAB software shows clearly the performance of the DVR in mitigating voltage sags.
Keywords: Dynamic voltage restorer, Voltage sags, Power quality, Injection methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42863292 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator
Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau
Abstract:
Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.Keywords: Anti-vibration devices, dry foam, FFFluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18973291 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle
Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri
Abstract:
On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.
Keywords: Electric vehicles, fuel cell, battery, regenerative braking, energy management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22443290 Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques
Authors: Ali Shoeb Moon, Moonyong Lee
Abstract:
The draw solute separation process in Forward Osmosis desalination was simulated in Aspen Plus chemical process modeling software, to estimate the energy consumption and compare it with other desalination processes, mainly the Reverse Osmosis process which is currently most prevalent. The electrolytic chemistry for the system was retrieved using the Elec – NRTL property method in the Aspen Plus database. Electrical equivalent of energy required in the Forward Osmosis desalination technique was estimated and compared with the prevalent desalination techniques.Keywords: Desalination, Energy, Forward Osmosis, Separation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40533289 Simulation and Analysis of Control System for a Solar Desalination System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
Fresh water is one of the resources which is getting depleted day by day. A wise method to address this issue is by the application of renewable energy-sun irradiation and by means of decentralized, cheap, energetically self-sufficient, robust and simple to operate plants, distillates can be obtained from sea, river or even sewage. Solar desalination is a technique used to desalinate water using solar energy. The present work deals with the comprehensive design and simulation of solar tracking system using LabVIEW, temperature and mass flow rate control of the solar desalination plant using LabVIEW and also analysis of single phase inverter circuit with LC filters for solar pumping system in MATLAB. The main objective of this work is to improve the performance of solar desalination system using automatic tracking system, output control using temperature and mass flow rate control system and also to reduce the harmonic distortion in the solar pumping system by means of LC filters. The simulation of single phase inverter was carried out using MATLAB and the output waveforms were analyzed. Simulations were performed for optimum output temperature control, which in turn controls the mass flow rate of water in the thermal collectors. Solar tracking system was accomplished using LABVIEW and was tested successfully. The thermal collectors are tracked in accordance with the sun’s irradiance levels, thereby increasing the efficiency of the thermal collectors.Keywords: Desalination, Electro dialysis, LabVIEW, MATLAB, PWM inverter, Reverse osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23973288 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.
Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14343287 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software
Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura
Abstract:
This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24583286 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network
Authors: M. Jayekumar, V. Nagarajan
Abstract:
Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.
Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192