Search results for: Object Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2044

Search results for: Object Detection

1084 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1083 CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems

Authors: Candido Alcaide, Manuel Dıaz, Luis Llopis, Antonio Marquez, Bartolome Rubio, Enrique Soler

Abstract:

The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.

Keywords: Peer-to-peer, mobile systems, real-time, service-oriented architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1082 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
1081 Software Technology Behind Computer Accounting

Authors: M. Župan, V. Budimir

Abstract:

The main problems of data centric and open source project are large number of developers and changes of core framework. Model-View-Control (MVC) design pattern significantly improved the development and adjustments of complex projects. Entity framework as a Model layer in MVC architecture has simplified communication with the database. How often are the new technologies used and whether they have potentials for designing more efficient Enterprise Resource Planning (ERP) system that will be more suited to accountants?

Keywords: Accounting, Enterprise Resource Planning, Model- View-Control, Object Role Modeling, Open Source

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1080 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery

Authors: Seema Biday, Udhav Bhosle

Abstract:

Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.

Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1079 Beta-spline Surface Fitting to Multi-slice Images

Authors: Normi Abdul Hadi, Arsmah Ibrahim, Fatimah Yahya, Jamaludin Md. Ali

Abstract:

Beta-spline is built on G2 continuity which guarantees smoothness of generated curves and surfaces using it. This curve is preferred to be used in object design rather than reconstruction. This study however, employs the Beta-spline in reconstructing a 3- dimensional G2 image of the Stanford Rabbit. The original data consists of multi-slice binary images of the rabbit. The result is then compared with related works using other techniques.

Keywords: Beta-spline, multi-slice image, rectangular surface, 3D reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
1078 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

Authors: V.Manikandan, N.Devarajan

Abstract:

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
1077 Artificial Intelligence Techniques applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1076 Validating Condition-Based Maintenance Algorithms Through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
1075 Evaluation of Newly Developed Dot-ELISA Test for Identification of Naja-naja sumantrana and Calloselasma rhodostoma Venom Antigens

Authors: A.S. Sikarwar, S. Ambu, T .H. Wong

Abstract:

Snake bite cases in Malaysia most often involve the species Naja-naja and Calloselasma rhodostoma. In keeping with the need for a rapid snake venom detection kit in a clinical setting, plate and dot-ELISA test for the venoms of Naja-naja sumatrana, Calloselasma rhodostoma and the cobra venom fraction V antigen was developed. Polyclonal antibodies were raised and further used to prepare the reagents for the dot-ELISA test kit which was tested in mice, rabbit and virtual human models. The newly developed dot- ELISA kit was able to detect a minimum venom concentration of 244ng/ml with cross reactivity of one antibody type. The dot-ELISA system was sensitive and specific for all three snake venom types in all tested animal models. The lowest minimum venom concentration detectable was in the rabbit model, 244ng/ml of the cobra venom fraction V antigen. The highest minimum venom concentration was in mice, 1953ng/ml against a multitude of venoms. The developed dot-ELISA system for the detection of three snake venom types was successful with a sensitivity of 95.8% and specificity of 97.9%.

Keywords: ELISA, Venom, SVDK, Naja-naja sumatrana , Calloselasma rhodostoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1074 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the Internet. Also, unauthorized editing is occurred frequently. Thus, we propose an editing prevention technique for high-quality (HQ) video that can prevent these illegally edited copies from spreading out. The proposed technique is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the embedding signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in unauthorized access prevention method of visual communication or traitor tracking applications which need fast detection process to prevent illegally edited video content from spreading out.

Keywords: Editing prevention technique, gradient method, high-quality video, luminance change, visual communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1073 Design of an Innovative Accelerant Detector

Authors: Esther T. Akinlabi, Milan Isvarial, Stephen A. Akinlabi

Abstract:

Today, canines are still used effectively in acceleration detection situation. However, this method is becoming impractical in modern age and a new automated replacement to the canine is required. This paper reports the design of an innovative accelerant detector. Designing an accelerant detector is a long process as is any design process; therefore, a solution to the need for a mobile, effective accelerant detector is hereby presented. The device is simple and efficient to ensure that any accelerant detection can be conducted quickly and easily. The design utilizes Ultra Violet (UV) light to detect the accelerant. When the UV light shines on an accelerant, the hydrocarbons in the accelerant emit florescence. The advantages of using the UV light to detect accelerant are also outlined in this paper. The mobility of the device is achieved by using a Direct Current (DC) motor to run tank tracks. Tank tracks were chosen as to ensure that the device will be mobile in the rough terrain of a fire site. The materials selected for the various parts are also presented. A Solid Works Simulation was also conducted on the stresses in the shafts and the results are presented. This design is an innovative solution which offers a user friendly interface. The design is also environmentally friendly, ecologically sound and safe to use.

Keywords: Accelerant detector, Canines, Gas Chromatography- Mass Spectrometry (GC-MS), Ultra Violet light.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
1072 Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels

Authors: Suma. V., T. R. Gopalakrishnan Nair

Abstract:

Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.

Keywords: Defect Detection and Prevention, Inspections, Software Engineering, Software Process, Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
1071 Fuzzy Types Clustering for Microarray Data

Authors: Seo Young Kim, Tai Myong Choi

Abstract:

The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.

Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1070 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1069 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
1068 Molecular Detection and Characterization of Infectious Bronchitis Virus from Libya

Authors: Abdulwahab Kammon, Tan Sheau Wei, Abdul Rahman Omar, Abdunaser Dayhum, Ibrahim Eldghayes, Monier Sharif

Abstract:

Infectious bronchitis virus (IBV) is a very dynamic and evolving virus, causing major economic losses to the global poultry industry. Recently, the Libyan poultry industry faced severe outbreak of respiratory distress associated with high mortality and dramatic drop in egg production. Tracheal and cloacal swabs were analyzed for several poultry viruses. IBV was detected using SYBR Green I real-time PCR detection based on the nucleocapsid (N) gene. Sequence analysis of the partial N gene indicated high similarity (~ 94%) to IBV strain 3382/06 that was isolated from Taiwan. Even though the IBV strain 3382/06 is more similar to that of the Mass type H120, the isolate has been implicated associated with intertypic recombinant of 3 putative parental IBV strains namely H120, Taiwan strain 1171/92 and China strain CK/CH/LDL/97I. Complete sequencing and antigenicity studies of the Libya IBV strains are currently underway to determine the evolution of the virus and its importance in vaccine induced immunity. In this paper we documented for the first time the presence of possibly variant IBV strain from Libya which required dramatic change in vaccination program.

Keywords: Libya, Infectious bronchitis, Molecular characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
1067 Vibratinal Spectroscopic Identification of Beta-Carotene in Usnic Acid and PAHs as a Potential Martian Analogue

Authors: A. I. Alajtal, H. G. M. Edwards, M. A. Elbagermi

Abstract:

Raman spectroscopy is currently a part of the instrumentation suite of the ESA ExoMars mission for the remote detection of life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified and the biogeological modifications incurred as a result of extremophilic activity have been studied. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA ExoMars mission to search for life on Mars scheduled for 2018 and Raman spectroscopy is currently a part of the Pasteur instrumentation suite of this mission. Here, Raman spectroscopy using 785nm excitation was evaluated for determining various concentrations of beta-carotene in admixture with polyaromatic hydrocarbons and usnic acid have been investigated by Raman microspectrometry to determine the lowest levels detectable in simulation of their potential identification remotely in geobiological conditions in Martian scenarios. Information from this study will be important for the development of a miniaturized Raman instrument for targetting Martian sites where the biosignatures of relict or extant life could remain in the geological record.

Keywords: Raman spectroscopy, Mars-analog, Beta-carotene, PAHs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
1066 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
1065 Performance Analysis of a Combined Ordered Successive and Interference Cancellation Using Zero-Forcing Detection over Rayleigh Fading Channels in MIMO Systems

Authors: Jamal R. Elbergali

Abstract:

Multiple Input Multiple Output (MIMO) systems are wireless systems with multiple antenna elements at both ends of the link. Wireless communication systems demand high data rate and spectral efficiency with increased reliability. MIMO systems have been popular techniques to achieve these goals because increased data rate is possible through spatial multiplexing scheme and diversity. Spatial Multiplexing (SM) is used to achieve higher possible throughput than diversity. In this paper, we propose a Zero- Forcing (ZF) detection using a combination of Ordered Successive Interference Cancellation (OSIC) and Zero Forcing using Interference Cancellation (ZF-IC). The proposed method used an OSIC based on Signal to Noise Ratio (SNR) ordering to get the estimation of last symbol, then the estimated last symbol is considered to be an input to the ZF-IC. We analyze the Bit Error Rate (BER) performance of the proposed MIMO system over Rayleigh Fading Channel, using Binary Phase Shift Keying (BPSK) modulation scheme. The results show better performance than the previous methods.

Keywords: SNR, BER, BPSK, MIMO, Modulation, Zero forcing (ZF), OSIC, ZF-IC, Spatial Multiplexing (SM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1064 The Impact of Social Stratification to the Phenomenon of “Terrorism“

Authors: Rustamov Nasim, Roostamov Yunusbek

Abstract:

In this work social stratification is considered as one of significant factor which generate the phenomena “terrorism” and it puts the accent on correlation connection between them, with the object of creation info-logical model generation of phenomena of “terrorism” based on stratification process.

Keywords: Social stratification, stratification process, generation of phenomena “terrorism”, conceptions – “terror”, “terrorize” and “terrorism”, info-logical model of phenomena of “terrorism”.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4240
1063 Network Based High Performance Computing

Authors: Karanjeet Singh Kahlon, Gurvinder Singh, Arjan Singh

Abstract:

In the past few years there is a change in the view of high performance applications and parallel computing. Initially such applications were targeted towards dedicated parallel machines. Recently trend is changing towards building meta-applications composed of several modules that exploit heterogeneous platforms and employ hybrid forms of parallelism. The aim of this paper is to propose a model of virtual parallel computing. Virtual parallel computing system provides a flexible object oriented software framework that makes it easy for programmers to write various parallel applications.

Keywords: Applet, Efficiency, Java, LAN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1062 Concurrent Access to Complex Entities

Authors: Cosmin Rablou

Abstract:

In this paper we present a way of controlling the concurrent access to data in a distributed application using the Pessimistic Offline Lock design pattern. In our case, the application processes a complex entity, which contains in a hierarchical structure different other entities (objects). It will be shown how the complex entity and the contained entities must be locked in order to control the concurrent access to data.

Keywords: Object-oriented programming, Pessimistic Lock, Design pattern, Concurrent access to data, Processing complex entities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1061 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: Bio-signals, DC Component, Doppler Effect, ellipse fitting, radar, SDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
1060 Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules

Authors: Mohd Sukri Hassan, Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman

Abstract:

Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.

Keywords: Halal, real-time PCR, gelatin, FTIR and chemometrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
1059 Multimedia Firearms Training System

Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel

Abstract:

The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.

Keywords: Firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
1058 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a videoconference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: E-learning, platform, authoring tool, science teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521
1057 Fuzzy Sequential Algorithm for Discrimination and Decision Maker in Sporting Events

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

Events discrimination and decision maker in sport field are the subject of many interesting studies in computer vision and artificial intelligence. A large volume of research has been conducted for automatic semantic event detection and summarization of sports videos. Indeed the results of these researches have a very significant contribution, as well to television broadcasts as to the football teams, since the result of sporting event can be reflected on the economic field. In this paper, we propose a novel fuzzy sequential technique which lead to discriminate events and specify the technico-tactics on going the game, nor the fuzzy system or the sequential one, may be able to respond to the asked question, in fact fuzzy process is not sufficient, it does not respect the chronological order according the time of various events, similarly the sequential process needs flexibility about the parameters used in this study, it may affect a membership degree of each parameter on the one hand and respect the sequencing of events for each frame on the other hand. Indeed this technique describes special events such as dribbling, headings, short sprints, rapid acceleration or deceleration, turning, jumping, kicking, ball occupation, and tackling according velocity vectors of the two players and the ball direction.

Keywords: Sequential process, Event detection, Soccer videos analysis, Fuzzy process, Spatio-temporal parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1056 Time-Domain Stator Current Condition Monitoring: Analyzing Point Failures Detection by Kolmogorov-Smirnov (K-S) Test

Authors: Najmeh Bolbolamiri, Maryam Setayesh Sanai, Ahmad Mirabadi

Abstract:

This paper deals with condition monitoring of electric switch machine for railway points. Point machine, as a complex electro-mechanical device, switch the track between two alternative routes. There has been an increasing interest in railway safety and the optimal management of railway equipments maintenance, e.g. point machine, in order to enhance railway service quality and reduce system failure. This paper explores the development of Kolmogorov- Smirnov (K-S) test to detect some point failures (external to the machine, slide chairs, fixing, stretchers, etc), while the point machine (inside the machine) is in its proper condition. Time-domain stator Current signatures of normal (healthy) and faulty points are taken by 3 Hall Effect sensors and are analyzed by K-S test. The test is simulated by creating three types of such failures, namely putting a hard stone and a soft stone between stock rail and switch blades as obstacles and also slide chairs- friction. The test has been applied for those three faults which the results show that K-S test can effectively be developed for the aim of other point failures detection, which their current signatures deviate parametrically from the healthy current signature. K-S test as an analysis technique, assuming that any defect has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. This test works based on the null hypothesis that ECDF of target distribution is statistically similar to ECDF of reference distribution. Therefore by comparing a given current signature (as target signal) from unknown switch state to a number of template signatures (as reference signal) from known switch states, it is possible to identify which is the most likely state of the point machine under analysis.

Keywords: stator currents monitoring, railway points, point failures, fault detection and diagnosis, Kolmogorov-Smirnov test, time-domain analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
1055 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027