Search results for: Microstructure parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3911

Search results for: Microstructure parameters

2951 Modelling Conditional Volatility of Saving Rate by a Time-Varying Parameter Model

Authors: Katleho D. Makatjane, Kalebe M. Kalebe

Abstract:

The present paper used time-varying parameters which are based on the score function of a probability density at time t to model volatility of saving rate. We used a scaled likelihood function to update the parameters of the model overtime. Our results revealed high diligence of time-varying since the location parameter is greater than zero. Furthermore, we discovered a leptokurtic condition on saving rate’s distribution. Kapetanios, Shin-Shell Nonlinear Augmented Dickey-Fuller (KSS-NADF) test showed that the saving rate has a nonlinear unit root; therefore, it can be modeled by a generalised autoregressive score (GAS) model. Additionally, value at risk (VaR) and conditional tail expectation (CTE) indicate that 99% of the time people in Lesotho are saving more than spending. This puts the economy in high risk of not expanding. Therefore, the monetary policy committee (MPC) of Lesotho should revise their monetary policies towards this high saving rates risk.

Keywords: Generalized autoregressive score, time-varying, saving rate, Lesotho.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
2950 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2949 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: Pressing, notch, matrix, flow function, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
2948 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2947 Measurement and Analysis of Temperature Effects on Box Girders of Continuous Rigid Frame Bridges

Authors: Bugao Wang, Weifeng Wang, Xianwei Zeng

Abstract:

Researches on the general rules of temperature field changing and their effects on the bridge in construction are necessary. This paper investigated the rules of temperature field changing and its effects on bridge using onsite measurement and computational analysis. Guanyinsha Bridge was used as a case study in this research. The temperature field was simulated in analyses. The effects of certain boundary conditions such as sun radiance, wind speed, and model parameters such as heat factor and specific heat on temperature field are investigated. Recommended values for these parameters are proposed. The simulated temperature field matches the measured observations with high accuracy. At the same time, the stresses and deflections of the bridge computed with the simulated temperature field matches measured values too. As a conclusion, the temperature effect analysis of reinforced concrete box girder can be conducted directly based on the reliable weather data of the concerned area.

Keywords: continuous rigid frame bridge, temperature effectanalysis, temperature field, temperature field simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
2946 Non-Sensitive Solutions in Multi-Objective Optimization of a Solar Photovoltaic/Thermal(PV/T) Air Collector

Authors: F. Sarhaddi, S. Farahat, M .A. Alavi, F. Sobhnamayan

Abstract:

In this paper, an attempt has been made to obtain nonsensitive solutions in the multi-objective optimization of a photovoltaic/thermal (PV/T) air collector. The selected objective functions are overall energy efficiency and exergy efficiency. Improved thermal, electrical and exergy models are used to calculate the thermal and electrical parameters, overall energy efficiency, exergy components and exergy efficiency of a typical PV/T air collector. A computer simulation program is also developed. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, multi-objective optimization has been carried out under given climatic, operating and design parameters. The optimized ranges of inlet air velocity, duct depth and the objective functions in optimal Pareto front have been obtained. Furthermore, non-sensitive solutions from energy or exergy point of view in the results of multi-objective optimization have been shown.

Keywords: Solar photovoltaic thermal (PV/T) air collector, Overall energy efficiency, Exergy efficiency, Multi-objectiveoptimization, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
2945 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers

Authors: Alexandre Boum, Salomon Madinatou

Abstract:

This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.

Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
2944 Statistical Description of Counterpoise Effective Length Based On Regressive Formulas

Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus

Abstract:

This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.

Keywords: Counterpoise, Grounding conductor, Effective length, Lightning, Monte Carlo method, Statistical distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
2943 Predicting the Adsorptive Capacities of Biosolid as a Barrier in Soil to Remove Industrial Contaminants

Authors: Hakim Aguedal, Hafida Hentit, Abdallah Aziz, Djillali Rida Merouani, Abdelkader Iddou

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants which can cause a serious menace. To prevent this risk and to protect the groundwater, we proceeded in this study to test the reliability of a biosolid as barrier to prevent the migration of very dangerous pollutants as ‘Cadmium’ through the different soil layers. In this study, we tried to highlight the effect of several parameters such as: turbidity (different cycle of Hydration/Dehydration), rainfall, effect of initial Cd(II) concentration and the type of soil. These parameters allow us to find the most effective manner to integrate this barrier in the soil. From the results obtained, we found a significant effect of the barrier. Indeed, the recorded passing quantities are lowest for the highest rainfall; we noted also that the barrier has a better affinity towards higher concentrations; the most retained amounts of cadmium has been in the top layer of the two types of soil tested, while the lowest amounts of cadmium are recorded in the bottom layers of soils.

Keywords: Adsorption of Cadmium, Barrier, Groundwater Pollution, Protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
2942 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2941 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: Non-isothermal wedge, thermal radiation, nanofluid, magnetic field, Soret and Dufour effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
2940 Vibration Attenuation in Layered and Welded Beams with Unequal Thickness

Authors: B. Singh, K. K. Agrawal, B. K. Nanda

Abstract:

In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.

Keywords: Slip damping, tack welded joint, thickness ratio, inplane bending stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
2939 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: Sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
2938 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion

Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida

Abstract:

This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.

Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
2937 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: Power quality, arc furnaces, propagation of voltage fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
2936 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

Authors: Fares Innal, Yves Dutuit, Mourad Chebila

Abstract:

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
2935 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
2934 Using Radial Basis Function Neural Networks to Calibrate Water Quality Model

Authors: Lihui Ma, Kunlun Xin, Suiqing Liu

Abstract:

Modern managements of water distribution system (WDS) need water quality models that are able to accurately predict the dynamics of water quality variations within the distribution system environment. Before water quality models can be applied to solve system problems, they should be calibrated. Although former researchers use GA solver to calibrate relative parameters, it is difficult to apply on the large-scale or medium-scale real system for long computational time. In this paper a new method is designed which combines both macro and detailed model to optimize the water quality parameters. This new combinational algorithm uses radial basis function (RBF) metamodeling as a surrogate to be optimized for the purpose of decreasing the times of time-consuming water quality simulation and can realize rapidly the calibration of pipe wall reaction coefficients of chlorine model of large-scaled WDS. After two cases study this method is testified to be more efficient and promising, and deserve to generalize in the future.

Keywords: Metamodeling, model calibration, radial basisfunction, water distribution system, water quality model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
2933 Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium

Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury

Abstract:

This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.

Keywords: Fluid suction, heat and mass transfer, inclined porous plate, MHD, mixed convection, porous medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
2932 Effect of Plasma Therapy on Epidermal Regeneration

Authors: Magda Bădescu, Daniela Jitaru, C.Grigoraş, L.Bădescu, I. Topala, Manuela Ciocoiu

Abstract:

The purpose of our study was to compare spontaneous re-epithelisation characteristics versus assisted re-epithelisation. In order to assess re-epithelisation of the injured skin, we have imagined and designed a burn wound model on Wistar rat skin. Our aim was to create standardised, easy reproducible and quantifiable skin lesions involving entire epidermis and superficial dermis. We then have applied the above mentioned therapeutic strategies to compare regeneration of epidermis and dermis, local and systemic parameter changes in different conditions. We have enhanced the reepithelisation process under a moist atmosphere of a polyurethane wound dress modified with helium non-thermal plasma, and with the aid of direct cold-plasma treatment respectively. We have followed systemic parameters change: hematologic and biochemical parameters, and local features: oxidative stress markers and histology of skin in the above mentioned conditions. Re-epithelisation is just a part of the skin regeneration process, which recruits cellular components, with the aid of epidermal and dermal interaction via signal molecules.

Keywords: Plasma medicine, re-epithelisation and tissue regeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
2931 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
2930 Optimization of R507A-R23 Cascade Refrigeration System using Genetic Algorithm

Authors: A. D. Parekh, P. R. Tailor, H.R Jivanramajiwala

Abstract:

The present work deals with optimization of cascade refrigeration system using eco friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% by wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable. Optimization of R507AR23 cascade refrigeration system performance parameters such as minimum work required, refrigeration effect, coefficient of performance and exergetic efficiency was carried out in terms of eight operating parameters- combinations using Genetic Algorithm tool. The eight operating parameters include (1) low side evaporator temperature (2) high side condenser temperature (3) temperature difference in the cascade heat exchanger (4) low side condenser temperature (5) low side degree of subcooling (6) high side degree of subcooling (7) low side degree of superheating (8) high side degree of superheating. Results show that for minimum work system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and low degree of subcooling and superheating in both side. For maximum refrigeration effect system should operate at high temperature in low side evaporator, high temperature in high side condenser, high temperature difference in cascade condenser, low temperature in low side condenser and higher degree of subcooling in LT and HT side. For maximum coefficient of performance and exergetic efficiency, system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and higher degree of subcooling and superheating in low side of the system.

Keywords: Cascade refrigeration system, Genetic Algorithm, R507A, R23,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
2929 The Removal of Cu (II) Ions from Aqueous Solutions on Synthetic Zeolite NaA

Authors: Dimitar Georgiev, Bogdan Bogdanov, Yancho Hristov, Irena Markovska

Abstract:

In this study the adsorption of Cu (II) ions from aqueous solutions on synthetic zeolite NaA was evaluated. The effect of solution temperature and the determination of the kinetic parameters of adsorption of Cu(II) from aqueous solution on zeolite NaA is important in understanding the adsorption mechanism. Variables of the system include adsorption time, temperature (293- 328K), initial solution concentration and pH for the system. The sorption kinetics of the copper ions were found to be strongly dependent on pH (the optimum pH 3-5), solute ion concentration and temperature (293 – 328 K). It was found, the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) onto ziolite NaA, suggesting that the adsorption mechanism might be a chemisorptions process The activation energy of adsorption (Ea) was determined as Cu(II) 13.5 kJ mol-1. The low value of Ea shows that Cu(II) adsorption process by zeolite NaA may be an activated chemical adsorption. The thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were also determined from the temperature dependence. The results show that the process of adsorption Cu(II) is spontaneous and endothermic process and rise in temperature favors the adsorption.

Keywords: Zeolite NaA, adsorption, adsorption capacity, kinetic sorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
2928 Effect of TCSR on Measured Impedance by Distance Protection in Presence Single Phase to Earth Fault

Authors: Mohamed Zellagui, Abdelaziz Chaghi

Abstract:

This paper presents the impact study of apparent reactance injected by series Flexible AC Transmission System (FACTS) i.e. Thyristor Controlled Series Reactor (TCSR) on the measured impedance of a 400 kV single electrical transmission line in the presence of phase to earth fault with fault resistance. The study deals with an electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by TCSR connected at midpoint of the line. This compensator used to inject active and reactive powers is controlled by three TCSR-s. The simulations results investigate the impacts of the TCSR on the parameters of short circuit calculation and parameters of measured impedance by distance relay in the presence of earth fault for three cases study.

Keywords: TCSR, Transmission line, Apparent reactance, Earth fault, Symmetrical components, Distance protection, Measured impedance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
2927 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater

Authors: Bhausaheb L. Pangarkar, M.G. Sane

Abstract:

Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.

Keywords: MD, ground water, seawater, AGMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
2926 Density Clustering Based On Radius of Data (DCBRD)

Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
2925 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: Water inflow, Tunnel, Discontinues rock, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
2924 Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS

Authors: Alexander Breitholz, Wolfgang Arlt, Ki-Pung Yoo

Abstract:

Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.

Keywords: COSMO-RS, Equation of State, Group contribution, Lattice Fluid, Phase equilibria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
2923 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
2922 Enhancement of Visual Comfort Using Parametric Double Skin Façades

Authors: Ahmed Ashraf Khamis, Sherif A. Ibrahim, Mahmoud ElKhatieb, Mohamed A. Barakat

Abstract:

Parametric design deemed to be one of icons of the modern architectural trends that facilitates taking complex design decisions counting on altering various design parameters. Double skin façades are one of the parametric applications that are used in parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using a parametric double skin façade. First, the design and optimization process was executed utilizing Grasshopper parametric design software package, in which the daylighting performance of the base case building model was compared with the one used in the double façade showing an enhancement in task plane illuminance by 180%. Second, execution drawings are made for the optimized design using Revit software. Finally, computerized digital fabrication stages of the designed model with various scales are demonstrated to reach the final design decisions using Simplify 3D for mock-up digital fabrication.

Keywords: Parametric design, Double skin façades, Digital Fabrication, Grasshopper, Simplify 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347