Search results for: building material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2981

Search results for: building material

2051 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6209
2050 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this research, intended for concrete products for the construction materials, by using the LCA method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low carbon technologies of the future.

Keywords: CO2 Emissions, CO2 Reduction, Ready-mixed Concrete, Environmental Impact Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
2049 Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm

Authors: Z. Pavlík, J. Žumár, M. Pavlíková, J. Kočí, R. Černý

Abstract:

Water vapour transport properties of gypsum block are studied in dependence on relative humidity using inverse analysis based on genetic algorithm. The computational inverse analysis is performed for the relative humidity profiles measured along the longitudinal axis of a rod sample. Within the performed transient experiment, the studied sample is exposed to two environments with different relative humidity, whereas the temperature is kept constant. For the basic gypsum characterisation and for the assessment of input material parameters necessary for computational application of genetic algorithm, the basic material properties of gypsum are measured as well as its thermal and water vapour storage parameters. On the basis of application of genetic algorithm, the relative humidity dependent water vapour diffusion coefficient and water vapour diffusion resistance factor are calculated.

Keywords: Water vapour transport, gypsum block, transient experiment, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
2048 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based On Liquid Glass

Authors: M. Zelinkova, M. Ondova

Abstract:

Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.

Keywords: Alkali activation, geopolymers, fly ash, particle fineness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
2047 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
2046 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

Authors: Watchara Songserm, Teeradej Wuttipornpun

Abstract:

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Keywords: Finite capacity MRP, genetic algorithm, linear programming, flow shop, unrelated parallel machines, application in industries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
2045 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2044 Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

Authors: Anna H. Tadevosyan, Stepan K. Mayrapetyan, Michael P. Schellenberg, Laura M. Ghalachyan, Albert H. Hovsepyan, Khachatur S. Mayrapetyan

Abstract:

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Keywords: accumulation of artificial radionuclides, pepper, polymer, water-soil-plant system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2043 Distributed Case Based Reasoning for Intelligent Tutoring System: An Agent Based Student Modeling Paradigm

Authors: O. P. Rishi, Rekha Govil, Madhavi Sinha

Abstract:

Online learning with Intelligent Tutoring System (ITS) is becoming very popular where the system models the student-s learning behavior and presents to the student the learning material (content, questions-answers, assignments) accordingly. In today-s distributed computing environment, the tutoring system can take advantage of networking to utilize the model for a student for students from other similar groups. In the present paper we present a methodology where using Case Based Reasoning (CBR), ITS provides student modeling for online learning in a distributed environment with the help of agents. The paper describes the approach, the architecture, and the agent characteristics for such system. This concept can be deployed to develop ITS where the tutor can author and the students can learn locally whereas the ITS can model the students- learning globally in a distributed environment. The advantage of such an approach is that both the learning material (domain knowledge) and student model can be globally distributed thus enhancing the efficiency of ITS with reducing the bandwidth requirement and complexity of the system.

Keywords: CBR, ITS, student modeling, distributed system, intelligent agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
2042 Sustainability of Carbon Nanotube-Reinforced Concrete

Authors: Rashad Al Araj, Adil K. Tamimi

Abstract:

Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.

Keywords: Sustainability, carbon nanotube, microsilica, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
2041 Production Line Layout Planning Based on Complexity Measurement

Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu

Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Keywords: Production line, layout planning, complexity measurement, optimization, mass customization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
2040 Feasibility of Integrating Heating Valve Drivers with KNX-standard for Performing Dynamic Hydraulic Balance in Domestic Buildings

Authors: Tobias Teich, Danny Szendrei, Markus Schrader, Franziska Jahn, Susan Franke

Abstract:

The increasing demand for sufficient and clean energy forces industrial and service companies to align their strategies towards efficient consumption. This trend refers also to the residential building sector. There, large amounts of energy consumption are caused by house and facility heating. Many of the operated hot water heating systems lack hydraulic balanced working conditions for heat distribution and –transmission and lead to inefficient heating. Through hydraulic balancing of heating systems, significant energy savings for primary and secondary energy can be achieved. This paper addresses the use of KNX-technology (Smart Buildings) in residential buildings to ensure a dynamic adaption of hydraulic system's performance, in order to increase the heating system's efficiency. In this paper, the procedure of heating system segmentation into hydraulically independent units (meshes) is presented. Within these meshes, the heating valve are addressed and controlled by a central facility server. Feasibility criteria towards such drivers will be named. The dynamic hydraulic balance is achieved by positioning these valves according to heating loads, that are generated from the temperature settings in the corresponding rooms. The energetic advantages of single room heating control procedures, based on the application FacilityManager, is presented.

Keywords: building automation, dynamic hydraulic balance, energy savings, VPN-networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
2039 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis

Abstract:

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Keywords: Community resilience, problem based learning, project based learning, case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
2038 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
2037 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: Economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2036 Thermal and Visual Performance of Solar Control Film

Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail

Abstract:

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Keywords: window, solar control film, natural ventilation, thermal performance, visual performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
2035 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: Homogenization, periodic boundary condition, elastoplastic properties, RVE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
2034 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle

Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
2033 Vibration of Functionally Graded Cylindrical Shells under Effects Free-free and Clamed-clamped Boundary Conditions

Authors: M. R.Isvandzibaei, A.Jahani

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free and clamped-clamped boundary conditions.

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
2032 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach

Authors: Helen L. Hein, Joachim Schwarte

Abstract:

As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.

Keywords: Aerogel-based, insulating material, early develop¬ment phase, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
2031 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: J. Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
2030 Dynamics of Mini Hydraulic Backhoe Excavator: A Lagrange-Euler (L-E) Approach

Authors: Bhaveshkumar P. Patel, J. M. Prajapati

Abstract:

Excavators are high power machines used in the mining, agricultural and construction industry whose principal functions are digging (material removing), ground leveling and material transport operations. During the digging task there are certain unknown forces exerted by the bucket on the soil and the digging operation is repetitive in nature. Automation of the digging task can be performed by an automatically controlled excavator system, which is not only control the forces but also follow the planned digging trajectories. To develop such a controller for automated excavation, it is required to develop a dynamic model to describe the behavior of the control system during digging operation and motion of excavator with time. The presented work described a dynamic model needed for controller design and which is derived by applying Lagrange-Euler approach. The developed dynamic model is intended for further development of an automated excavation control system for light duty construction work and can be applied for heavy duty or all types of backhoe excavators.

Keywords: Backhoe excavator, controller, digging, excavation, trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4443
2029 Traditionally Sustainability Analyses of Hydraulic-Architectural Bridge Construction in Iran

Authors: Karim Shiraazi, Zargham OstadiAsl, Vahid Sheikhloie, Ahadollah Azami, Shahin Hassanimehr

Abstract:

Bridge is an architectural symbol in Iran as Badgir (wind catcher); fire temples and arch are vaults are such. Therefore, from the very old ages, construction of bridges in Iran has mixed with architecture, social customs, alms and charity and holiness. Since long ago, from Mad, Achaemenid, Parthian and Sassanid times which construction of bridges got an inseparable relation with social dependency and architecture, based on those dependency bridges and dams got holy names; as Dokhtar castle and Dokhtar bridges were constructed. This method continued even after Islam and whenever Iranians got free from political fights and the immunity of roads were established the bridge construction did also prospered. In ancient times bridge construction passes through it growing and completion process and in Sassanid time in some way it reached to the peak of art and glory; as after Islam especially during 4th. century (Arab calendar) it put behind a period of glory and in Safavid time it reached to an exceptional glory and magnificence by constructing glorious bridges on Zayandeh Roud River in Isfahan. Having a combined style and changeability into bridge barrier, some of these bridges develop into magnificent constructions. The sustainable structures, mentioned above, are constructed for various reasons as follows: connecting two sides of a river, storing water, controlling floods, using water energy to operate water windmills, making lanes of streams for farms- use, and building recreational places for people, etc. These studies carried in bridges reveals the fact that in construction and designing mentioned above, lots of technological factors have been taken into consideration such as exceeding floods in the rives, hydraulic and hydrology of the rivers and bridges, geology, foundation, structure, construction material, and adopting appropriate executing methods, all of which are being analyzed in this article.

Keywords: Hydraulic-Architectural Bridge, Sustainability, Construction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
2028 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: Indoor air, carbon nanoparticles, LPG, partially premixed flame, optical techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
2027 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: Fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
2026 Advantages of Composite Materials in Aircraft Structures

Authors: Muniyasamy Kalanchiam, Moorthy Chinnasamy

Abstract:

In the competitive environment of aircraft industries it becomes absolutely necessary to improve the efficiency, performance of the aircrafts to reduce the development and operating costs considerably, in order to capitalize the market. An important contribution to improve the efficiency and performance can be achieved by decreasing the aircraft weight through considerable usage of composite materials in primary aircraft structures. In this study, a type of composite material called Carbon Fiber Reinforced Plastic (CFRP) is explored for the usage is aircraft skin panels. Even though there were plenty of studies and research has been already carried out, here a practical example of an aircraft skin panel is taken and substantiated the benefits of composites material usage over the metallic skin panel. A crown skin panel of a commercial aircraft is designed using both metal and composite materials. Stress analysis has been carried out for both and margin of safety is estimated for the critical load cases. The skin panels are compared for manufacturing, tooling, assembly and cost parameters. Detail step by step comparison between metal and composite constructions are studied and results are tabulated for better understanding.

Keywords: Composites, CFRP, Aircraft Structure, Skin panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10640
2025 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2024 Collaborative Web Platform for Rich Media Educational Material Creation

Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako

Abstract:

This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.

Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2023 A Study of Grounding Grid Characteristics with Conductive Concrete

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

The purpose of this paper is to improve electromagnetic characteristics on grounding grid by applying the conductive concrete. The conductive concrete in this study is under an extra high voltage (EHV, 345kV) system located in a high-tech industrial park or science park. Instead of surrounding soil of grounding grid, the application of conductive concrete can reduce equipment damage and body damage caused by switching surges. The focus of the two cases on the EHV distribution system in a high-tech industrial park is presented to analyze four soil material styles. By comparing several soil material styles, the study results have shown that the conductive concrete can effectively reduce the negative damages caused by electromagnetic transient. The adoption of the style of grounding grid located 1.0 (m) underground and conductive concrete located from the ground surface to 1.25 (m) underground can obviously improve the electromagnetic characteristics so as to advance protective efficiency.

Keywords: Switching surges, grounding gird, electromagnetic transient, conductive concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
2022 Geochemistry of Tektites from Hainan Island and Northeast Thailand

Authors: Yung-Tan Lee, Ren-Yi Huang, Ju-Chin Chen, Jyh-Yi Shih, Wen-Feng Chang, Yen-Tsui Hu, Chih-Cheng Chen

Abstract:

Twenty seven tektites from the Wenchang area, Hainan province (south China) and five tektites from the Khon Kaen area (northeast Thailand) were analyzed for major and trace element contents and Rb-Sr isotopic compositions. All the samples studied are splash-form tektites. Tektites of this study are characterized by high SiO2 contents ranging from 71.95 to 74.07 wt% which is consistent with previously published analyses of Australasian tektites. The trace element ratios Ba/Rb (avg. 3.89), Th/Sm (avg. 2.40), Sm/Sc (avg. 0.45), Th/Sc (avg. 0.99) and the rare earth elements (REE) contents of tektites of this study are similar to the average upper continental crust. Based on the chemical composition, it is suggested that tektites in this study are derived from similar parental material and are similar to the post-Archean upper crustal rocks. The major and trace element abundances of tektites analyzed indicate that the parental material of tektites may be a terrestrial sedimentary deposit. The tektites from the Wenchang area, Hainan Island have high positive εSr(0) values-ranging from 184.5~196.5 which indicate that the parental material for these tektites have similar Sr isotopic compositions to old terrestrial sedimentary rocks and they were not dominantly derived from recent young sediments (such as soil or loess). Based on Rb-Sr isotopic data, it has been suggested by Blum (1992) [1]that the depositional age of sedimentary target materials is close to 170Ma (Jurassic). According to the model suggested by Ho and Chen (1996)[2], mixing calculations for various amounts and combinations of target rocks have been carried out. We consider that the best fit for tektites from the Wenchang area is a mixture of 47% shale, 23% sandstone, 25% greywacke and 5% quartzite, and the other tektites from Khon Kaen area is a mixture of 46% shale, 2% sandstone, 20% greywacke and 32% quartzite.

Keywords: Geochemistry, Hainan Island, Northeast Thailand, Tektites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905