Search results for: Nonlinear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1617

Search results for: Nonlinear programming

687 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
686 Transmission Lines Loading Enhancement Using ADPSO Approach

Authors: M. Mahdavi, H. Monsef, A. Bagheri

Abstract:

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

Keywords: ADPSO, TEP problem, Lines loading optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
685 Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications

Authors: Zubair Ahmad, M. H. Sayyad, M. Yaseen, M. Ali

Abstract:

In this work, an organic compound 5,10,15,20- Tetrakis(3,5-di-tertbutylphenyl)porphyrinatocopper(II) (TDTBPPCu) is studied as an active material for thin film electronic devices. To investigate the electrical properties of TDTBPPCu, junction of TDTBPPCu with heavily doped n-Si and Al is fabricated. TDTBPPCu film was sandwiched between Al and n-Si electrodes. Various electrical parameters of TDTBPPCu are determined. The current-voltage characteristics of the junction are nonlinear, asymmetric and show rectification behavior, which gives the clue of formation of depletion region. This behavior indicates the potential of TDTBPPCu for electronics applications. The current-voltage and capacitance-voltage techniques are used to find the different electronic parameters.

Keywords: P-type, organic semiconductor, Electricalcharacteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
684 A New Edit Distance Method for Finding Similarity in Dna Sequence

Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin

Abstract:

The P-Bigram method is a string comparison methods base on an internal two characters-based similarity measure. The edit distance between two strings is the minimal number of elementary editing operations required to transform one string into the other. The elementary editing operations include deletion, insertion, substitution two characters. In this paper, we address the P-Bigram method to sole the similarity problem in DNA sequence. This method provided an efficient algorithm that locates all minimum operation in a string. We have been implemented algorithm and found that our program calculated that smaller distance than one string. We develop PBigram edit distance and show that edit distance or the similarity and implementation using dynamic programming. The performance of the proposed approach is evaluated using number edit and percentage similarity measures.

Keywords: Edit distance, String Matching, String Similarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3317
683 Proposal of Additional Fuzzy Membership Functions in Smoothing Transition Autoregressive Models

Authors: Ε. Giovanis

Abstract:

In this paper we present, propose and examine additional membership functions for the Smoothing Transition Autoregressive (STAR) models. More specifically, we present the tangent hyperbolic, Gaussian and Generalized bell functions. Because Smoothing Transition Autoregressive (STAR) models follow fuzzy logic approach, more fuzzy membership functions should be tested. Furthermore, fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation or genetic algorithm instead to nonlinear squares. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Keywords: Forecast , Fuzzy membership functions, Smoothingtransition, Time-series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
682 Robust Nonlinear Control of a Miniature Autonomous Helicopter using Sliding Mode Control Structure

Authors: H. Ifassiouen, M. Guisser, H.Medromi

Abstract:

This paper presents an investigation into the design of a flight control system, using a robust sliding mode control structure, designed using the exact feedback linearization procedure of the dynamic of a small-size autonomous helicopter in hover. The robustness of the controller in the context of stabilization and trajectory tracking with respect to small body forces and air resistance on the main and tail rotor, is analytically proved using Lyapunov approach. Some simulation results are presented to illustrate the performance and robustness of such controller in the presence of small body forces and air resistance.

Keywords: Robust control, sliding mode, stability, Lyapunovapproach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
681 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, Step method, delay differential equation, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
680 A Visual Educational Modeling Language to Help Teachers in Learning Scenario Design

Authors: A. Retbi, M. Khalidi Idrissi, S. Bennani

Abstract:

The success of an e-learning system is highly dependent on the quality of its educational content and how effective, complete, and simple the design tool can be for teachers. Educational modeling languages (EMLs) are proposed as design languages intended to teachers for modeling diverse teaching-learning experiences, independently of the pedagogical approach and in different contexts. However, most existing EMLs are criticized for being too abstract and too complex to be understood and manipulated by teachers. In this paper, we present a visual EML that simplifies the process of designing learning scenarios for teachers with no programming background. Based on the conceptual framework of the activity theory, our resulting visual EML focuses on using Domainspecific modeling techniques to provide a pedagogical level of abstraction in the design process.

Keywords: Educational modeling language, Domain Specific Modeling, authoring systems, learning scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
679 Blind Identification of MA Models Using Cumulants

Authors: Mohamed Boulouird, Moha M'Rabet Hassani

Abstract:

In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize third- and fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the Gauss-Newton algorithms are exposed. An algorithm based on the joint-diagonalization of the fourth-order cumulant matrices (FOSI) is also considered, as well as an improved version of the classical C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of fourth-order cumulants. To illustrate the effectiveness of our methods, various simulation examples are presented.

Keywords: Cumulants, Identification, MA models, Parameter estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
678 Parameter Estimation of Diode Circuit Using Extended Kalman Filter

Authors: Amit Kumar Gautam, Sudipta Majumdar

Abstract:

This paper presents parameter estimation of a single-phase rectifier using extended Kalman filter (EKF). The state space model has been obtained using Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode current of the circuit have been estimated using EKF. Simulation results validate the better accuracy of the proposed method as compared to the least mean square method (LMS). Further, EKF has the advantage that it can be used for nonlinear systems.

Keywords: Extended Kalman filter, parameter estimation, single phase rectifier, state space modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
677 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

Authors: Ε. Giovanis

Abstract:

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
676 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: cluster, cost, demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
675 Model Discovery and Validation for the Qsar Problem using Association Rule Mining

Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu

Abstract:

There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.

Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
674 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.

Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692
673 Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation

Authors: V. Salajka, J. Kala, P. Hradil

Abstract:

The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.

Keywords: Temperature fields, Spent Fuel, Interim storage facility, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
672 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
671 Modeling Studies for Electrocoagulation

Authors: A. Genç, R. Hacıoğlu, B. Bakırcı

Abstract:

Synthetic oily wastewaters were prepared from metal working fluids (MWF). Electrocoagulation experiments were performed under constant voltage application. The current, conductivity, pH, dissolved oxygen concentration and temperature were recorded on line at every 5 seconds during the experiments. Effects of applied voltage differences, electrode materials and distance between electrodes on removal efficiency have been investigated. According to the experimental results, the treatment of MWF wastewaters by iron electrodes rather than aluminum and stainless steel was much quicker; and the distance between electrodes should be less than 1cm. The electrocoagulation process was modeled by using block oriented approach and found out that it can be modeled as a single input and multiple output system. Modeling studies indicates that the electrocoagulation process has a nonlinear model structure.

Keywords: Electrocoagulation, oily wastewater, SIMO systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
670 Comparison of Material Constitutive Models Used in FEA of Low Volume Roads

Authors: Lenka Ševelová, Aleš Florian

Abstract:

Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).

Keywords: FEA, FEM, geotechnical materials, low volume roads, material constitutive models, pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886
669 Generation Scheduling Optimization of Multi-Hydroplants: A Case Study

Authors: Shuangquan Liu, Jinwen Wang, Dada Wang

Abstract:

A case study of the generation scheduling optimization of the multi-hydroplants on the Yuan River Basin in China is reported in this paper. Concerning the uncertainty of the inflows, the long/mid-term generation scheduling (LMTGS) problem is solved by a stochastic model in which the inflows are considered as stochastic variables. For the short-term generation scheduling (STGS) problem, a constraint violation priority is defined in case not all constraints are satisfied. Provided the stage-wise separable condition and low dimensions, the hydroplant-based operational region schedules (HBORS) problem is solved by dynamic programming (DP). The coordination of LMTGS and STGS is presented as well. The feasibility and the effectiveness of the models and solution methods are verified by the numerical results.

Keywords: generation scheduling, multi-hydroplants, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
668 Performance Analysis of Quantum Cascaded Lasers

Authors: M. B. El_Mashade, I. I. Mahamoud, M. S. El_Tokhy

Abstract:

Improving the performance of the QCL through block diagram as well as mathematical models is the main scope of this paper. In order to enhance the performance of the underlined device, the mathematical model parameters are used in a reliable manner in such a way that the optimum behavior was achieved. These parameters play the central role in specifying the optical characteristics of the considered laser source. Moreover, it is important to have a large amount of radiated power, where increasing the amount of radiated power represents the main hopping process that can be predicted from the behavior of quantum laser devices. It was found that there is a good agreement between the calculated values from our mathematical model and those obtained with VisSim and experimental results. These demonstrate the strength of mplementation of both mathematical and block diagram models.

Keywords: Quantum Cascaded Lasers (QCLs), Modeling, Block Diagram Programming, Intersubband transitions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
667 Airport Investment Risk Assessment under Uncertainty

Authors: Elena M. Capitanul, Carlos A. Nunes Cosenza, Walid El Moudani, Felix Mora Camino

Abstract:

The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided.

Keywords: Airports, fuzzy logic, risk, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
666 Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations

Authors: Lai Lai Win Kyi, Nay Min Tun

Abstract:

Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.

Keywords: Cluster of Workstations, Parallel sorting algorithms, performance analysis, parallel computing and MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
665 LQR Based PID Controller Design for 3-DOF Helicopter System

Authors: Santosh Kr. Choudhary

Abstract:

In this article, LQR based PID controller design for 3DOF helicopter system is investigated. The 3-DOF helicopter system is a benchmark laboratory model having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. This article first presents the mathematical model of the 3DOF helicopter system and then illustrates the basic idea and technical formulation for controller design. The paper explains the simple approach for the approximation of PID design parameters from the LQR controller gain matrix. The simulation results show that the investigated controller has both static and dynamic performance, therefore the stability and the quick control effect can be obtained simultaneously for the 3DOF helicopter system.

Keywords: 3DOF helicopter system, PID controller, LQR controller, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5226
664 Cost Optimized CO2 Pipeline Transportation Grid: A Case Study from Italian Industries

Authors: P Bumb, U Desideri, F Quattrocchi, L Arcioni

Abstract:

This paper presents the feasibility study of CO2 sequestration from the sources to the sinks in the prospective of Italian Industries. CO2 produced at these sources captured, compressed to supercritical pressures, transported via pipelines and stored in underground geologic formations such as depleted oil and natural gas reservoirs, un-minable coal seams and deep saline aquifers. In this work, we present the optimized pipeline infrastructure for the CO2 with appropriate constraints to find lower cost system by the use of nonlinear optimization software LINGO 11.0. This study was conducted on CO2 transportation complex network of Italian Industries, to find minimum cost network for transporting the CO2 from sources to the sinks.

Keywords: CCS, CO2, ECBM, EU, NAP, LINGO, UNMIG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
663 An Aggregate Production Planning Model for Brass Casting Industry in Fuzzy Environment

Authors: Ömer Faruk Baykoç, Ümit Sami Sakalli

Abstract:

In this paper, we propose a fuzzy aggregate production planning (APP) model for blending problem in a brass factory which is the problem of computing optimal amounts of raw materials for the total production of several types of brass in a period. The model has deterministic and imprecise parameters which follows triangular possibility distributions. The brass casting APP model can not always be solved by using common approaches used in the literature. Therefore a mathematical model is presented for solving this problem. In the proposed model, the Lai and Hwang-s fuzzy ranking concept is relaxed by using one constraint instead of three constraints. An application of the brass casting APP model in a brass factory shows that the proposed model successfully solves the multi-blend problem in casting process and determines the optimal raw material purchasing policies.

Keywords: Aggregate production planning, Blending, brasscasting, possibilistic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
662 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: Amplitude-independent damping, Homogeneous friction, Pendulum nonlinear dynamics, Structural control, Vibration resonant absorbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
661 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
660 New VLSI Architecture for Motion Estimation Algorithm

Authors: V. S. K. Reddy, S. Sengupta, Y. M. Latha

Abstract:

This paper presents an efficient VLSI architecture design to achieve real time video processing using Full-Search Block Matching (FSBM) algorithm. The design employs parallel bank architecture with minimum latency, maximum throughput, and full hardware utilization. We use nine parallel processors in our architecture and each controlled by a state machine. State machine control implementation makes the design very simple and cost effective. The design is implemented using VHDL and the programming techniques we incorporated makes the design completely programmable in the sense that the search ranges and the block sizes can be varied to suit any given requirements. The design can operate at frequencies up to 36 MHz and it can function in QCIF and CIF video resolution at 1.46 MHz and 5.86 MHz, respectively.

Keywords: Video Coding, Motion Estimation, Full-Search, Block-Matching, VLSI Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
659 On the Modeling and State Estimation for Dynamic Power System

Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim

Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
658 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248