Search results for: Model order Reduction
11295 Moving Beyond the Limits of Disability Inclusion: Using the Concept of Belonging Through Friendship to Improve the Outcome of the Social Model of Disability
Authors: Luke S. Carlos A. Thompson
Abstract:
The medical model of disability, though beneficial for the medical professional, is often exclusionary, restrictive and dehumanizing when applied to the lived experience of disability. As a result, a critique of this model was constructed called the social model of disability. Much of the language used to articulate the purpose behind the social model of disability can be summed up within the word inclusion. However, this essay asserts that inclusiveness is an incomplete aspiration. The social model, as it currently stands, does not aid in creating a society where those with impairments actually belong. Rather, the social model aids in lessening the visibility, or negative consequence of, difference. Therefore, the social model does not invite society to welcome those with physical and intellectual impairments. It simply aids society in ignoring the existence of impairment by removing explicit forms of exclusion. Rather than simple inclusion, then, this essay uses John Swinton’s concept of friendship and Jean Vanier’s understanding of belonging to better articulate the intended outcome of the social model—a society where everyone can belong.Keywords: Belong, community, disability, exclusion, friendship, inclusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228111294 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model
Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard
Abstract:
Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ash is mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After, analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.Keywords: Bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESARLCPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189511293 Numerical Modeling of the Depth-Averaged Flow Over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D1 depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. κ − ε and 2D LES turbulence models were consider in this article. 2D CFD2 simulations for one hill was done to check the depth-averaged model in practise.
Keywords: Depth-averaged equations, numerical modeling, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194411292 Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine
Authors: Ali Ghaffari, A. Hosein Shamekhi, Akbar Saki, Ehsan Kamrani
Abstract:
In order to meet the limits imposed on automotive emissions, engine control systems are required to constrain air/fuel ratio (AFR) in a narrow band around the stoichiometric value, due to the strong decay of catalyst efficiency in case of rich or lean mixture. This paper presents a model of a sample spark ignition engine and demonstrates Simulink-s capabilities to model an internal combustion engine from the throttle to the crankshaft output. We used welldefined physical principles supplemented, where appropriate, with empirical relationships that describe the system-s dynamic behavior without introducing unnecessary complexity. We also presents a PID tuning method that uses an adaptive fuzzy system to model the relationship between the controller gains and the target output response, with the response specification set by desired percent overshoot and settling time. The adaptive fuzzy based input-output model is then used to tune on-line the PID gains for different response specifications. Experimental results demonstrate that better performance can be achieved with adaptive fuzzy tuning relative to similar alternative control strategies. The actual response specifications with adaptive fuzzy matched the desired response specifications.Keywords: Modelling, Air–fuel ratio control, SI engine, Adaptive fuzzy Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252511291 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction
Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez
Abstract:
Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.
Keywords: Black sand mineral, methyl orange, oxidation, photocatalysis, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127311290 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373811289 Modeling and Simulation of a Serial Production Line with Constant Work-In-Process
Authors: Mehmet Savsar
Abstract:
This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.Keywords: Production line simulator, Push-pull system, JIT system, Constant WIP, Machine failures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201111288 Measuring the Comprehensibility of a UML-B Model and a B Model
Authors: Rozilawati Razali, Paul W. Garratt
Abstract:
Software maintenance, which involves making enhancements, modifications and corrections to existing software systems, consumes more than half of developer time. Specification comprehensibility plays an important role in software maintenance as it permits the understanding of the system properties more easily and quickly. The use of formal notation such as B increases a specification-s precision and consistency. However, the notation is regarded as being difficult to comprehend. Semi-formal notation such as the Unified Modelling Language (UML) is perceived as more accessible but it lacks formality. Perhaps by combining both notations could produce a specification that is not only accurate and consistent but also accessible to users. This paper presents an experiment conducted on a model that integrates the use of both UML and B notations, namely UML-B, versus a B model alone. The objective of the experiment was to evaluate the comprehensibility of a UML-B model compared to a traditional B model. The measurement used in the experiment focused on the efficiency in performing the comprehension tasks. The experiment employed a cross-over design and was conducted on forty-one subjects, including undergraduate and masters students. The results show that the notation used in the UML-B model is more comprehensible than the B model.
Keywords: Model comprehensibility, formal and semi-formal notation, empirical assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159811287 SLM Using Riemann Sequence Combined with DCT Transform for PAPR Reduction in OFDM Communication Systems
Authors: Pepin Magnangana Zoko Goyoro, Ibrahim James Moumouni, Sroy Abouty
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems. However, the main drawback of OFDM systems is that, it suffers from the problem of high Peak-to-Average Power Ratio (PAPR) which causes inefficient use of the High Power Amplifier and could limit transmission efficiency. OFDM consist of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. In this paper, we propose an effective reduction scheme that combines DCT and SLM techniques. The scheme is composed of the DCT followed by the SLM using the Riemann matrix to obtain phase sequences for the SLM technique. The simulation results show PAPR can be greatly reduced by applying the proposed scheme. In comparison with OFDM, while OFDM had high values of PAPR –about 10.4dB our proposed method achieved about 4.7dB reduction of the PAPR with low complexities computation. This approach also avoids randomness in phase sequence selection, which makes it simpler to decode at the receiver. As an added benefit, the matrices can be generated at the receiver end to obtain the data signal and hence it is not required to transmit side information (SI).Keywords: DCT transform, OFDM, PAPR, Riemann matrix, SLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 264011286 Dynamic Cellular Remanufacturing System (DCRS) Design
Authors: Tariq Aljuneidi, Akif Asil Bulgak
Abstract:
An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that considers CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.Keywords: Cellular Manufacturing System, Remanufacturing, Mathematical Programming, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213911285 Enhanced Spectral Envelope Coding Based On NLMS for G.729.1
Authors: Keunseok Cho, Sangbae Jeong, Hyungwook Chang, Minsoo Hahn
Abstract:
In this paper, a new encoding algorithm of spectral envelope based on NLMS in G.729.1 for VoIP is proposed. In the TDAC part of G.729.1, the spectral envelope and MDCT coefficients extracted in the weighted CELP coding error (lower-band) and the higher-band input signal are encoded. In order to reduce allocation bits for spectral envelope coding, a new quantization algorithm based on NLMS is proposed. Also, reduced bits are used to enhance sound quality. The performance of the proposed algorithm is evaluated by sound quality and bit reduction rates in clean and frame loss conditions.
Keywords: G.729.1, MDCT coefficient, NLMS, spectral envelope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166911284 Evaluating the Use of Digital Art Tools for Drawing to Enhance Artistic Ability and Improve Digital Skill among Junior School Students
Authors: Aber S. Aboalgasm, Rupert Ward
Abstract:
This study investigated some results of the use of digital art tools by junior school children in order to discover if these tools could promote artistic ability and creativity. The study considers the ease of use and usefulness of the tools as well as how to assess artwork produced by digital means. As the use of these tools is a relatively new development in Art education, this study may help educators in their choice of which tools to use and when to use them. The study also aims to present a model for the assessment of students’ artistic development and creativity by studying their artistic activity. This model can help in determining differences in students’ creative ability and could be useful both for teachers, as a means of assessing digital artwork, and for students, by providing the motivation to use the tools to their fullest extent. Sixteen students aged nine to ten years old were observed and recorded while they used the digital drawing tools. The study found that, according to the students’ own statements, it was not the ease of use but the successful effects the tools provided which motivated the children to use them.
Keywords: Artistic ability, creativity, drawing digital tool, TAM model, psychomotor domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281711283 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities
Authors: Lovorka Galetic, Zeljko Vukelic
Abstract:
The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company.Keywords: Dynamic capabilities, innovation capabilities, competitive advantage, business results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142811282 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221211281 Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions
Authors: Marcus Banda
Abstract:
In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.Keywords: Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204911280 PI Control for Second Order Delay System with Tuning Parameter Optimization
Authors: R. Farkh, K. Laabidi, M. Ksouri
Abstract:
In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem.Keywords: Genetic algorithm, Hermit-Biehler theorem, optimization, PI controller, second order delay system, stability region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177511279 Numerical Investigation of the Chilling of Food Products by Air-Mist Spray
Authors: Roy J. Issa
Abstract:
Spray chilling using air-mist nozzles has received much attention in the food processing industry because of the benefits it has shown over forced air convection. These benefits include an increase in the heat transfer coefficient and a reduction in the water loss by the product during cooling. However, few studies have simulated the heat transfer and aerodynamics phenomena of the air-mist chilling process for optimal operating conditions. The study provides insight into the optimal conditions for spray impaction, heat transfer efficiency and control of surface flooding. A computational fluid dynamics model using a two-phase flow composed of water droplets injected with air is developed to simulate the air-mist chilling of food products. The model takes into consideration droplet-to-surface interaction, water-film accumulation and surface runoff. The results of this study lead to a better understanding of the heat transfer enhancement, water conservation, and to a clear direction for the optimal design of air-mist chilling systems that can be used in commercial applications in the food and meat processing industries.Keywords: Droplets impaction efficiency, Droplet size, Heat transfer enhancement factor, Water runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195311278 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177311277 Determining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach
Authors: Farnaz G. Nezami, Mir B. Aryanezhad, Seyed J. Sadjadi
Abstract:
In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, after variables- modifications an iterative technique based on the concept of geometric mean will be introduced to solve the resulting non-standard posynomial model which can be applied to a wide variety of models in non-standard posynomial geometric programming form. At the end a numerical analysis will be presented to accredit the validity of the mentioned model.Keywords: Geometric programming, marketing, nonlinear optimization, production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143511276 A Model of Sustainability in the Accommodation Sector
Authors: L. S. Zavodna, J. Zavodny Pospisil
Abstract:
The aim of this paper is to identify the factors for sustainability in the accommodation sector. Although sustainability is a current trend in tourism, not many facilities know how to apply the concept in practice. This paper presents a model for the implementation of sustainability in hotels, hostels, campgrounds, or other facilities. First, there are identified sections of each accommodation facility, which can contribute to sustainability. Furthermore, concrete steps are presented to transfer this model into reality.Keywords: Accommodation sector, model, sustainable tourism, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146311275 Mathematical Expression for Machining Performance
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.
Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73111274 Efficient CNC Milling by Adjusting Material Removal Rate
Authors: Majid Tolouei-Rad
Abstract:
This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining efficiency. A methodology has been used that stabilizes machining operations by adjusting material removal rate in pocket milling operations while keeping cutting forces within limits. This increases the life of cutting tool and reduces the risk of tool breakage, machining vibration, and chatter. Case studies reveal the fact that application of this approach could result in a slight increase of machining time, however, a considerable reduction of tooling cost, machining vibration, noise and chatter can be achieved in addition to producing a better surface finish.Keywords: CNC machines, milling, optimization, removal rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347611273 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump
Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir
Abstract:
The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.
Keywords: Bubble pump, drift flow model, instability, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109011272 Receive and Transmit Array Antenna Spacingand Their Effect on the Performance of SIMO and MIMO Systems by using an RCS Channel Model
Authors: N. Ebrahimi-Tofighi, M. ArdebiliPour, M. Shahabadi
Abstract:
In this paper, the effect of receive and/or transmit antenna spacing on the performance (BER vs. SNR) of multipleantenna systems is determined by using an RCS (Radar Cross Section) channel model. In this physical model, the scatterers existing in the propagation environment are modeled by their RCS so that the correlation of the receive signal complex amplitudes, i.e., both magnitude and phase, can be estimated. The proposed RCS channel model is then compared with classical models.Keywords: MIMO system, Performance of system, Signalcorrelation, SIMO system, Wireless channel model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193211271 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu
Abstract:
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186911270 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC
Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos
Abstract:
In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.Keywords: Oscillating water column, Shallow flow, Waveenergy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146711269 RTCoord: A Methodology to Design WSAN Applications
Authors: J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio
Abstract:
Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.Keywords: Sensor networks, real time and embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130011268 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation
Authors: Terrence Chen, Thomas S. Huang
Abstract:
In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210311267 Hydrogen Integration in Petrochemical Complexes, Using Modified Automated Targeting Method
Authors: M. Shariati, N. Tahouni, A. Khoshgard, M.H. Panjeshahi
Abstract:
Owing to extensive use of hydrogen in refining or petrochemical units, it is essential to manage hydrogen network in order to make the most efficient utilization of hydrogen. On the other hand, hydrogen is an important byproduct not properly used through petrochemical complexes and mostly sent to the fuel system. A few works have been reported in literature to improve hydrogen network for petrochemical complexes. In this study a comprehensive analysis is carried out on petrochemical units using a modified automated targeting technique which is applied to determine the minimum hydrogen consumption. Having applied the modified targeting method in two petrochemical cases, the results showed a significant reduction in required fresh hydrogen.Keywords: Automated targeting, Hydrogen network, Petrochemical, Process integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166911266 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm
Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin
Abstract:
In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint Analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.
Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081