Search results for: Genetic optimization
1396 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm
Authors: S. Esfandeh, M. Sedighizadeh
Abstract:
Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.Keywords: Weather, Climate, PSO, Prediction, Meteorological
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20761395 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem
Authors: Kapse Swapnil, K. Shankar
Abstract:
Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9841394 Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF
Authors: Ishtiaq Ahmed, Muhammad Anjum Zia, Hafiz Muhammad Nasir Iqbal
Abstract:
The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.Keywords: Cellulase, Lignocellulosic residue, Processoptimization, Proximal analysis, SSF, Trichoderma viride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25381393 Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach
Authors: Azadeh Maroufmashat, Sourena Sattari Khavas, Halle Bakhteeyar
Abstract:
Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.
Keywords: Multi objective optimization, DER systems, Energy hub, Cost, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24661392 The Multi-scenario Knapsack Problem: An Adaptive Search Algorithm
Authors: Mhand Hifi, Hedi Mhalla, Mustapha Michaphy
Abstract:
In this paper, we study the multi-scenario knapsack problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of an adaptive algorithm for solving heuristically the problem. The used method combines two complementary phases: a size reduction phase and a dynamic 2- opt procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for reducing the size problem. Second, the adaptive search procedure is applied in order to attain a feasible solution Finally, the performances of two versions of the proposed algorithm are evaluated on a set of randomly generated instances.
Keywords: combinatorial optimization, max-min optimization, knapsack, heuristics, problem reduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16181391 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37561390 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22771389 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: Cooperative networks, normalized capacity, sensing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18791388 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351387 Optimization of Deglet-Nour Date (Phoenix dactylifera L.) Phenol Extraction Conditions
Authors: Lekbir Adel, Alloui-Lombarkia Ourida, Mekentichi Sihem, Noui Yassine, Baississe Salima
Abstract:
The objective of this study was to optimize the extraction conditions for phenolic compounds, total flavonoids, and antioxidant activity from Deglet-Nour variety. The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The effects of extraction variables, namely types of solvent (methanol, ethanol and acetone) and extraction time (1h, 6h, 12h and 24h) on phenolics extraction yield were evaluated. It has been shown that the time of extraction and types of solvent have a statistically significant influence on the extraction of phenolic compounds from Deglet-Nour variety. The optimised conditions yielded values of 80.19 ± 6.37 mg GAE/100 g FW for TPC, 2.34 ± 0.27 mg QE/100 g FW for TFC and 90.20 ± 1.29% for antioxidant activity were methanol solvent and 6 hours of time. According to the results obtained in this study, Deglet-Nour variety can be considered as a natural source of phenolic compounds with good antioxidant capacity.
Keywords: Deglet-Nour variety, Date palm Fruit, Phenolic compounds, Total flavonoids, Antioxidant activity, Extraction, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26771386 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871385 Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches
Authors: Suhas K, Sripadaraja K
Abstract:
This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.Keywords: Microelectromechanical Systems (MEMS), RadioFrequency MEMS, Modeling, Actuators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591384 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9611383 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products
Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter
Abstract:
Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.Keywords: Assembly scheduling, large-scale products, make-to-order, rescheduling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371382 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.
Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33291381 Gray Level Image Encryption
Authors: Roza Afarin, Saeed Mozaffari
Abstract:
The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.
Keywords: Correlation coefficients, Genetic algorithm, Image encryption, Image entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22381380 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9401379 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: Identification, Hammerstein-Wiener, optimization, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7991378 The Possibility of Solving a 3x3 Rubik’s Cube under 3 Seconds
Authors: Chung To Kong, Siu Ming Yiu
Abstract:
Rubik's cube was invented in 1974. Since then, speedcubers all over the world try their best to break the world record again and again. The newest record is 3.47 seconds. There are many factors that affect the timing including turns per second (tps), algorithm, finger trick, and hardware of the cube. In this paper, the lower bound of the cube solving time will be discussed using convex optimization. Extended analysis of the world records will be used to understand how to improve the timing. With the understanding of each part of the solving step, the paper suggests a list of speed improvement technique. Based on the analysis of the world record, there is a high possibility that the 3 seconds mark will be broken soon.
Keywords: Rubik’s cube, convex optimization, speed cubing, CFOP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451377 Impulsive Noise-Resilient Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
We present a new subband adaptive filter (R-SAF) which is robust against impulsive noise in system identification. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion against impulsive noise, the R-SAF comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to the robustness against the impulsive noise and the capable convergence performance. Experimental results clearly demonstrate that the proposed R-SAF outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.Keywords: Subband adaptive filter, L1-norm, system identification, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14701376 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.
Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111375 Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach
Authors: Ejaz Khan, Conor Heneghan
Abstract:
In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.Keywords: Equalizer, target impulse response, convex optimization, matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17121374 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials
Authors: Pradeep M., N. S. Mahesh, Raja Hussain
Abstract:
Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.
Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51891373 Online Learning Activities Kit on Plants in Thai Literature in Compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn
Authors: Pornpapatsorn Princhankol, Kannika Udnunkarn
Abstract:
This research was aimed to develop and determine the quality of online learning activities kit as well as to examine the learning achievement of students and their satisfaction towards the kit through authentic assessment. The tools in this research contained online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, the assessment form, the learning achievement test, the satisfaction form and the authentic assessment form. The population consisted of 40 students in the second range of primary years (Prathomsuksa 4 to 6) at Ban Khao Rak School, Suratthani Province, Thailand. The research results showed that the content quality of the developed online learning activities kit as assessed by the experts was 4.70 on average or at very high level. The pre-test and post-test comparison was made to examine the learning achievement and it revealed that the post-test score was higher than the pre-test score with statistical significance at the .01 level. The satisfaction of the sampling group towards the online learning activities kit was 4.74 or at the highest level. The authentic assessment showed an average of 1.69 or at good level. Therefore, the online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn could be used in real classroom situations.Keywords: Online learning activities kit, Plants in Thai literature, School Botanical garden
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761372 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization
Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao
Abstract:
Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.Keywords: Minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131371 Neural Network Learning Based on Chaos
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.
Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801370 Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method
Authors: Farhad Kolahan, Mahdi Abachizadeh
Abstract:
In this paper, a simulated annealing algorithm has been developed to optimize machining parameters in turning operation on cylindrical workpieces. The turning operation usually includes several passes of rough machining and a final pass of finishing. Seven different constraints are considered in a non-linear model where the goal is to achieve minimum total cost. The weighted total cost consists of machining cost, tool cost and tool replacement cost. The computational results clearly show that the proposed optimization procedure has considerably improved total operation cost by optimally determining machining parameters.
Keywords: Optimization, Simulated Annealing, Machining Parameters, Turning Operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18211369 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: Proxy server, priority queue, optimization approach, distributed web crawling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28921368 Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels
Authors: R. Vedhapriya Vadhana, Ruba Soundar, K. G. Jothi Shalini
Abstract:
We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.Keywords: Beamforming, interference channels, MIMO-OFDM, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11261367 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942