Search results for: Binary Tree Classifier
6 Injunctions, Disjunctions, Remnants: The Reverse of Unity
Authors: Igor Guatelli
Abstract:
The universe of aesthetic perception entails impasses about sensitive divergences that each text or visual object may be subjected to. If approached through intertextuality that is not based on the misleading notion of kinships or similarities a priori admissible, the possibility of anachronistic, heterogeneous - and non-diachronic - assemblies can enhance the emergence of interval movements, intermediate, and conflicting, conducive to a method of reading, interpreting, and assigning meaning that escapes the rigid antinomies of the mere being and non-being of things. In negative, they operate in a relationship built by the lack of an adjusted meaning set by their positive existences, with no remainders; the generated interval becomes the remnant of each of them; it is the opening that obscures the stable positions of each one. Without the negative of absence, of that which is always missing or must be missing in a text, concept, or image made positive by history, nothing is perceived beyond what has been already given. Pairings or binary oppositions cannot lead only to functional syntheses; on the contrary, methodological disturbances accumulated by the approximation of signs and entities can initiate a process of becoming as an opening to an unforeseen other, transformation until a moment when the difficulties of [re]conciliation become the mainstay of a future of that sign/entity, not envisioned a priori. A counter-history can emerge from these unprecedented, misadjusted approaches, beginnings of unassigned injunctions and disjunctions, in short, difficult alliances that open cracks in a supposedly cohesive history, chained in its apparent linearity with no remains, understood as a categorical historical imperative. Interstices are minority fields that, because of their opening, are capable of causing opacity in that which, apparently, presents itself with irreducible clarity. Resulting from an incomplete and maladjusted [at the least dual] marriage between the signs/entities that originate them, this interval may destabilize and cause disorder in these entities and their own meanings. The interstitials offer a hyphenated relationship: a simultaneous union and separation, a spacing between the entity’s identity and its otherness or, alterity. One and the other may no longer be seen without the crack or fissure that now separates them, uniting, by a space-time lapse. Ontological, semantic shifts are caused by this fissure, an absence between one and the other, one with and against the other. Based on an improbable approximation between some conceptual and semantic shifts within the design production of architect Rem Koolhaas and the textual production of the philosopher Jacques Derrida, this article questions the notion of unity, coherence, affinity, and complementarity in the process of construction of thought from these ontological, epistemological, and semiological fissures that rattle the signs/entities and their stable meanings. Fissures in a thought that is considered coherent, cohesive, formatted are the negativity that constitutes the interstices that allow us to move towards what still remains as non-identity, which allows us to begin another story.
Keywords: Clearing, interstice, negative, remnant, spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4285 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.
Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12624 Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China
Authors: Duan Huanyun, Xu Rui, Li Jianchang, Yuan Yage, Wang Qiuxia, Nomana Intekhab Hadi
Abstract:
BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.
Keywords: Biogas Energy Production, Tithonia diversifolia, Energy Development, Ecological Agriculture, Eupatorium adenophorum, Eupatorium odorata, Anaerobic Fermentation, Biogas Production Potential, Mesopilic Fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26553 Laboratory Indices in Late Childhood Obesity: The Importance of DONMA Indices
Authors: Orkide Donma, Mustafa M. Donma, Muhammet Demirkol, Murat Aydin, Tuba Gokkus, Burcin Nalbantoglu, Aysin Nalbantoglu, Birol Topcu
Abstract:
Obesity in childhood establishes a ground for adulthood obesity. Especially morbid obesity is an important problem for the children because of the associated diseases such as diabetes mellitus, cancer and cardiovascular diseases. In this study, body mass index (BMI), body fat ratios, anthropometric measurements and ratios were evaluated together with different laboratory indices upon evaluation of obesity in morbidly obese (MO) children. Children with nutritional problems participated in the study. Written informed consent was obtained from the parents. Study protocol was approved by the Ethics Committee. Sixty-two MO girls aged 129.5±35.8 months and 75 MO boys aged 120.1±26.6 months were included into the scope of the study. WHO-BMI percentiles for age-and-sex were used to assess the children with those higher than 99th as morbid obesity. Anthropometric measurements of the children were recorded after their physical examination. Bio-electrical impedance analysis was performed to measure fat distribution. Anthropometric ratios, body fat ratios, Index-I and Index-II as well as insulin sensitivity indices (ISIs) were calculated. Girls as well as boys were binary grouped according to homeostasis model assessment-insulin resistance (HOMA-IR) index of <2.5 and >2.5, fasting glucose to insulin ratio (FGIR) of <6 and >6 and quantitative insulin sensitivity check index (QUICKI) of <0.33 and >0.33 as the frequently used cut-off points. They were evaluated based upon their BMIs, arms, legs, trunk, whole body fat percentages, body fat ratios such as fat mass index (FMI), trunk-to-appendicular fat ratio (TAFR), whole body fat ratio (WBFR), anthropometric measures and ratios [waist-to-hip, head-to-neck, thigh-to-arm, thigh-to-ankle, height/2-to-waist, height/2-to-hip circumference (C)]. SPSS/PASW 18 program was used for statistical analyses. p≤0.05 was accepted as statistically significance level. All of the fat percentages showed differences between below and above the specified cut-off points in girls when evaluated with HOMA-IR and QUICKI. Differences were observed only in arms fat percent for HOMA-IR and legs fat percent for QUICKI in boys (p≤ 0.05). FGIR was unable to detect any differences for the fat percentages of boys. Head-to-neck C was the only anthropometric ratio recommended to be used for all ISIs (p≤0.001 for both girls and boys in HOMA-IR, p≤0.001 for girls and p≤0.05 for boys in FGIR and QUICKI). Indices which are recommended for use in both genders were Index-I, Index-II, HOMA/BMI and log HOMA (p≤0.001). FMI was also a valuable index when evaluated with HOMA-IR and QUICKI (p≤0.001). The important point was the detection of the severe significance for HOMA/BMI and log HOMA while they were evaluated also with the other indices, FGIR and QUICKI (p≤0.001). These parameters along with Index-I were unique at this level of significance for all children. In conclusion, well-accepted ratios or indices may not be valid for the evaluation of both genders. This study has emphasized the limiting properties for boys. This is particularly important for the selection process of some ratios and/or indices during the clinical studies. Gender difference should be taken into consideration for the evaluation of the ratios or indices, which will be recommended to be used particularly within the scope of obesity studies.Keywords: Anthropometry, childhood obesity, gender, insulin sensitivity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14662 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841 Socio-Economic Insight of the Secondary Housing Market in Colombo Suburbs: Seller’s Point of Views
Authors: R. G. Ariyawansa, M. A. N. R. M. Perera
Abstract:
“House” is a powerful symbol of socio-economic background of individuals and families. In fact, housing provides all types of needs/wants from basic needs to self-actualization needs. This phenomenon can be realized only having analyzed hidden motives of buyers and sellers of the housing market. Hence, the aim of this study is to examine the socio-economic insight of the secondary housing market in Colombo suburbs. This broader aim was achieved via analyzing the general pattern of the secondary housing market, identifying socio-economic motives of sellers of the secondary housing market, and reviewing sellers’ experience of buyer behavior. A purposive sample of 50 sellers from popular residential areas in Colombo such as Maharagama, Kottawa, Piliyandala, Punnipitiya, and Nugegoda was used to collect primary data instead of relevant secondary data from published and unpublished reports. The sample was limited to selling price ranging from Rs15 million to Rs25 million, which apparently falls into middle and upper-middle income houses in the context. Participatory observation and semi-structured interviews were adopted as key data collection tools. Data were descriptively analyzed. This study found that the market is mainly handled by informal agents who are unqualified and unorganized. People such as taxi/tree-wheel drivers, boutique venders, security personals etc. are engaged in housing brokerage as a part time career. Few fulltime and formally organized agents were found but they were also not professionally qualified. As far as housing quality is concerned, it was observed that 90% of houses was poorly maintained and illegally modified. They are situated in poorly maintained neighborhoods as well. Among the observed houses, 2% was moderately maintained and 8% was well maintained and modified. Major socio-economic motives of sellers were “migrating foreign countries for education and employment” (80% and 10% respectively), “family problems” (4%), and “social status” (3%). Other motives were “health” and “environmental/neighborhood problems” (3%). This study further noted that the secondary middle income housing market in the area directly related with the migrants who motivated for education in foreign countries, mainly Australia, UK and USA. As per the literature, families motivated for education tend to migrate Colombo suburbs from remote areas of the country. They are seeking temporary accommodation in lower middle income housing. However, the secondary middle income housing market relates with the migration from Colombo to major global cities. Therefore, final transaction price of this market may depend on migration related dates such as university deadlines, visa and other agreements. Hence, it creates a buyers’ market lowering the selling price. Also it was revealed that the buyers tend to trust more on this market as far as the quality of construction of houses is concerned than brand new houses which are built for selling purpose.Keywords: Informal housing market, hidden motives of buyers and sellers, secondary housing market, socio-economic insight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698