Search results for: signal detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2537

Search results for: signal detection.

1637 Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

Authors: Masroor H. S. Bukhari, Z. H. Shah

Abstract:

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Keywords: bioelectromagnetism, cell membrane, evanescentwaves, photon tunnelling, resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1636 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
1635 A Watermarking Scheme for MP3 Audio Files

Authors: Dimitrios Koukopoulos, Yiannis Stamatiou

Abstract:

In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

Keywords: Audio watermarking, mpeg audio layer 3, hardinstance generation, NP-completeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
1634 DWM-CDD: Dynamic Weighted Majority Concept Drift Detection for Spam Mail Filtering

Authors: Leili Nosrati, Alireza Nemaney Pour

Abstract:

Although e-mail is the most efficient and popular communication method, unwanted and mass unsolicited e-mails, also called spam mail, endanger the existence of the mail system. This paper proposes a new algorithm called Dynamic Weighted Majority Concept Drift Detection (DWM-CDD) for content-based filtering. The design purposes of DWM-CDD are first to accurate the performance of the previously proposed algorithms, and second to speed up the time to construct the model. The results show that DWM-CDD can detect both sudden and gradual changes quickly and accurately. Moreover, the time needed for model construction is less than previously proposed algorithms.

Keywords: Concept drift, Content-based filtering, E-mail, Spammail.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1633 A Low Cost and High Quality Duty-Cycle Modulation Scheme and Applications

Authors: B. Lonla Moffo, J. Mbihi, L. Nneme Nneme

Abstract:

In this paper, a low cost duty-cycle modulation scheme is studied in depth and compared to the standard pulse width modulation technique. Using a mix of analytical reasoning and electronics simulation tools, it is shown that under the same operating conditions, most characteristics of the proposed duty-cycle modulation scheme are better than those provided by a standard pulse width modulation technique. The simulation results obtained when testing both modulation control policies on prototyping systems, indicate that the proposed duty-cycle modulation approach, appears to be a high quality control policy in a wide variety of application areas, including A/D and D/A conversion, signal transmission and switching control in power electronics.

Keywords: Duty-cycle Modulation, Operational amplifiers, Pulse width modulation, Power electronics, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
1632 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method

Authors: Ionel D. Craiu, Mihai Nedelcu

Abstract:

Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.

Keywords: Damage detection, generalized beam theory, inverse finite element method, shape sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159
1631 Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data

Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci

Abstract:

The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.

Keywords: Artifact, EEG, Renyi's entropy, independent component analysis, kurtosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
1630 An Adaptive ARQ – HARQ Method with Two RS Codes

Authors: Michal Martinovič, Jaroslav Polec, Kvetoslava Kotuliaková

Abstract:

In this paper we proposed multistage adaptive ARQ/HARQ/HARQ scheme. This method combines pure ARQ (Automatic Repeat reQuest) mode in low channel bit error rate and hybrid ARQ method using two different Reed-Solomon codes in middle and high error rate conditions. It follows, that our scheme has three stages. The main goal is to increase number of states in adaptive HARQ methods and be able to achieve maximum throughput for every channel bit error rate. We will prove the proposal by calculation and then with simulations in land mobile satellite channel environment. Optimization of scheme system parameters is described in order to maximize the throughput in the whole defined Signal-to- Noise Ratio (SNR) range in selected channel environment.

Keywords: Signal-to-noise ratio, throughput, forward error correction (FEC), pure and hybrid automatic repeat request (ARQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
1629 An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis

Authors: Koji Yamanouchi, Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida

Abstract:

''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.

Keywords: Cocktail party problem, blind Source Separation(BSS), independent component analysis, sliding DFT, onlineprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
1628 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1627 Wavelet Feature Selection Approach for Heart Murmur Classification

Authors: G. Venkata Hari Prasad, P. Rajesh Kumar

Abstract:

Phonocardiography is important in appraisal of congenital heart disease and pulmonary hypertension as it reflects the duration of right ventricular systoles. The systolic murmur in patients with intra-cardiac shunt decreases as pulmonary hypertension develops and may eventually disappear completely as the pulmonary pressure reaches systemic level. Phonocardiography and auscultation are non-invasive, low-cost, and accurate methods to assess heart disease. In this work an objective signal processing tool to extract information from phonocardiography signal using Wavelet is proposed to classify the murmur as normal or abnormal. Since the feature vector is large, a Binary Particle Swarm Optimization (PSO) with mutation for feature selection is proposed. The extracted features improve the classification accuracy and were tested across various classifiers including Naïve Bayes, kNN, C4.5, and SVM.

Keywords: Phonocardiography, Coiflet, Feature selection, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1626 Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow

Authors: Ali Shatnawi

Abstract:

Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.

Keywords: Data flow graph, Iteration period bound, Rateoptimalscheduling, Recursive DSP algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1625 Vehicle Position Estimation for Driver Assistance System

Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park

Abstract:

We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.

Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1624 Position Awareness Mechanisms for Wireless Sensor Networks

Authors: Seyed Mostafa Torabi

Abstract:

A Wireless sensor network (WSN) consists of a set of battery-powered nodes, which collaborate to perform sensing tasks in a given environment. Each node in WSN should be capable to act for long periods of time with scrimpy or no external management. One requirement for this independent is: in the presence of adverse positions, the sensor nodes must be capable to configure themselves. Hence, the nodes for determine the existence of unusual events in their surroundings should make use of position awareness mechanisms. This work approaches the problem by considering the possible unusual events as diseases, thus making it possible to diagnose them through their symptoms, namely, their side effects. Considering these awareness mechanisms as a foundation for highlevel monitoring services, this paper also shows how these mechanisms are included in the primal plan of an intrusion detection system.

Keywords: Awareness Mechanism, Intrusion Detection, Independent, Wireless Sensor Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
1623 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524
1622 Accelerating Integer Neural Networks On Low Cost DSPs

Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang

Abstract:

In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.

Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1621 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
1620 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition  problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.

Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
1619 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1618 On-line Speech Enhancement by Time-Frequency Masking under Prior Knowledge of Source Location

Authors: Min Ah Kang, Sangbae Jeong, Minsoo Hahn

Abstract:

This paper presents the source extraction system which can extract only target signals with constraints on source localization in on-line systems. The proposed system is a kind of methods for enhancing a target signal and suppressing other interference signals. But, the performance of proposed system is superior to any other methods and the extraction of target source is comparatively complete. The method has a beamforming concept and uses an improved time-frequency (TF) mask-based BSS algorithm to separate a target signal from multiple noise sources. The target sources are assumed to be in front and test data was recorded in a reverberant room. The experimental results of the proposed method was evaluated by the PESQ score of real-recording sentences and showed a noticeable speech enhancement.

Keywords: Beam forming, Non-stationary noise reduction, Source separation, TF mask.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
1617 Sensorless Commutation Control of Switched Reluctance Motor

Authors: N.H. Mvungi

Abstract:

This paper addresses control of commutation of switched reluctance (SR) motor without the use of a physical position detector. Rotor position detection schemes for SR motor based on magnetisation characteristics of the motor use normal excitation or applied current /voltage pulses. The resulting schemes are referred to as passive or active methods respectively. The research effort is in realizing an economical sensorless SR rotor position detector that is accurate, reliable and robust to suit a particular application. An effective and reliable means of generating commutation signals of an SR motor based on inductance profile of its stator windings determined using active probing technique is presented. The scheme has been validated online using a 4-phase 8/6 SR motor and an 8-bit processor.

Keywords: Position detection, rotor position, sensorless, switched reluctance, SR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
1616 UAV Position Estimation Using Remote Radio Head With Adaptive Power Control

Authors: Hyeon-Cheol Lee

Abstract:

The adaptive power control of Code Division Multiple Access (CDMA) communications using Remote Radio Head (RRH) between multiple Unmanned Aerial Vehicles (UAVs) with a link-budget based Signal-to-Interference Ratio (SIR) estimate is applied to four inner loop power control algorithms. It is concluded that Base Station (BS) can calculate not only UAV distance using linearity between speed and Consecutive Transmit-Power-Control Ratio (CTR) of Adaptive Step-size Closed Loop Power Control (ASCLPC), Consecutive TPC Ratio Step-size Closed Loop Power Control (CS-CLPC), Fixed Step-size Power Control (FSPC), but also UAV position with Received Signal Strength Indicator (RSSI) ratio of RRHs.

Keywords: speed estimation, adaptive power control, link-budget, SIR, multi-bit quantizer, RRH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
1615 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: Malware detection, network security, targeted attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6107
1614 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
1613 An Approach of the Inverter Voltage Used for the Linear Machine with Multi Air-Gap Structure

Authors: Pierre Kenfack

Abstract:

In this paper we present a contribution for the modelling and control of the inverter voltage of a permanent magnet linear generator with multi air-gap structure. The time domain control method is based on instant comparison of reference signals, in the form of current or voltage, with actual or measured signals. The reference current or voltage must be kept close to the actual signal with a reasonable tolerance. In this work, the time domain control method is used to control tracking signals. The performance evaluation concerns the continuation of reference signal. Simulations validate very well the tracking of reference variables (current, voltage) by measured or actual signals. All is simulated and presented under PSIM Software to show the performance and robustness of the proposed controller.

Keywords: Control, permanent magnet, linear machine, multi air-gap structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
1612 Wiener Filter as an Optimal MMSE Interpolator

Authors: Tsai-Sheng Kao

Abstract:

The ideal sinc filter, ignoring the noise statistics, is often applied for generating an arbitrary sample of a bandlimited signal by using the uniformly sampled data. In this article, an optimal interpolator is proposed; it reaches a minimum mean square error (MMSE) at its output in the presence of noise. The resulting interpolator is thus a Wiener filter, and both the optimal infinite impulse response (IIR) and finite impulse response (FIR) filters are presented. The mean square errors (MSE-s) for the interpolator of different length impulse responses are obtained by computer simulations; it shows that the MSE-s of the proposed interpolators with a reasonable length are improved about 0.4 dB under flat power spectra in noisy environment with signal-to-noise power ratio (SNR) equal 10 dB. As expected, the results also demonstrate the improvements for the MSE-s with various fractional delays of the optimal interpolator against the ideal sinc filter under a fixed length impulse response.

Keywords: Interpolator, minimum mean square error, Wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951
1611 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm

Authors: Sudipta Majumdar

Abstract:

This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.

Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
1610 An Efficient Watermarking Method for MP3 Audio Files

Authors: Dimitrios Koukopoulos, Yiannis Stamatiou

Abstract:

In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

Keywords: Audio watermarking, mpeg audio layer 3, hard instance generation, NP-completeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1609 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1608 Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM

Authors: Y. Hu, X. Zhao, T. Yamaguchi, M. Sasajima, Y. Koike

Abstract:

To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands.

Keywords: Anechoic room, finite element method, impulse hammer, loudspeaker, reverberation room, sweep signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798