Search results for: material flow/design/configuration (MF/D/C)
7568 The Anti-Noise and Anti-Wear Systems for Railways
Authors: Brigita Altenbaher
Abstract:
In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.Keywords: Active protection, composite material, lubrication, noise reduction, reduction at source, railway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22527567 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars
Authors: Shahrad Ebrahimzadeh
Abstract:
Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized, and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and higher structural efficiency than solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCBs) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs further investigation is replacing steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of Glass Fiber Reinforced Polymer (GFRP) bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.
Keywords: Design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607566 An Analysis of Uncoupled Designs in Chicken Egg
Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi
Abstract:
Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.Keywords: Uncoupled design, axiomatic design, nature design, design evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6837565 Incorporation of Safety into Design by Safety Cube
Authors: Mohammad Rajabalinejad
Abstract:
Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery.Keywords: Safety, safety cube, design, product, system, machinery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14957564 Possible Futures for Doctoral Research Training in Design
Authors: D. Barron, M. Zeegers
Abstract:
In this paper, we argue that Design research is basic to countries- national productivity and competition agendas at the same time that vagaries of research training presents as one of the barriers faced by Design Higher Degree by Research students in engaging those agendas. We argue that, given industry requirements for research-trained recruits, students have the right to expect that research training will provide the foundations of a successful career on an academic or research pathway or a professional pathway, but that universities have yet to address problems in their provision of research training for Design doctoral students. We suggest that to facilitate this, rigorous research conducted on the provision of Doctoral programs in Design would serve to inform future activities in Design research in productive ways.
Keywords: Design, Doctoral Design Education, Research Training
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14377563 Effects of Mach Number and Angle of Attack on Mass Flow Rates and Entropy Gain in a Supersonic Inlet
Authors: Taher Fodeibou, Ziaul Huque, Jenny Galvis
Abstract:
A parametric study of a mixed-compression supersonic inlet is performed and reported. The effects of inlet Mach Numbers, varying from 4 to 10, and angle of attack, varying from 0 to 10, are reported for a constant inlet dynamic pressure. The paper looked at the variations of mass flow rates through the inlet, gain in entropy through the inlet, and the angles of the external oblique shocks. The mass flow rates were found to decrease monotonically with Mach numbers and increase with angle of attacks. On the other hand the entropy gain through the inlet increased with increasing Mach number and angle of attack. The variation in static pressure was found to be identical from the inlet throat to the exit for Mach number values higher than 6.Keywords: Angle of attack, entropy gain, mass flow rates, supersonic inlets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26107562 Application of De-Laval Nozzle Transonic Flow Field Computation Approaches
Abstract:
A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.
Keywords: De-Laval nozzles, transonic calculations, transonic flow, supersonic nozzle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32867561 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures
Authors: Dong Wook Lee
Abstract:
This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.
Keywords: Computer Aided Engineering, CAE, Finite Element Analysis, FEA, impact analysis, penetration analysis, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6117560 Heat and Mass Transfer for Viscous Flow with Radiation Effect past a Nonlinearly Stretching Sheet
Authors: Kai-Long Hsiao
Abstract:
In this study, an analysis has been performed for heat and mass transfer of a steady laminar boundary-layer flow of a viscous flow past a nonlinearly stretching sheet. Parameters n, Ec, k0, Sc represent the dominance of the nonlinearly effect, viscous effect, radiation effect and mass transfer effect which have presented in governing equations, respectively. The similarity transformation and the finite-difference method have been used to analyze the present problem.Keywords: Nonlinearly stretching sheet, heat and mass transfer, radiation effect, viscous effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15067559 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.
Keywords: 3D printing, composite bushing, modal analysis, multi-material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597558 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI
Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.Keywords: Contex-sensitive, CFI, binary analysis, code reuse attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9437557 The Flotation Device Designed to Treat Phosphate Rock
Authors: Z. Q. Zhang, Y. Zhang, D. L. Li
Abstract:
To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.
Keywords: Collophanite flotation, flotation columns, flotation machines, multi-impeller pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8147556 Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries
Authors: Somkid Amornsamankul, Benchawan Wiwatanapataphee, Yong Hong Wu, Yongwimon Lenbury
Abstract:
In this paper, we study the pulsatile flow of blood through stenotic arteries. The inner layer of arterial walls is modeled as a porous medium and human blood is assumed as an incompressible fluid. A numerical algorithm based on the finite element method is developed to simulate the blood flow through both the lumen region and the porous wall. The algorithm is then applied to study the flow behaviour and to investigate the significance of the non-Newtonian effect.
Keywords: Stenotic artery, finite element, porous arterial wall, non-Newtonian model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22247555 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect
Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop
Abstract:
In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.
Keywords: Heat transfer, Radiation effect, Shrinking sheet Unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19537554 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.
Keywords: Open channel flow, Reynolds Number, roughness, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10807553 One-Dimensional Performance Improvement of a Single-Stage Transonic Compressor
Authors: A. Shahsavari, M. Nili-Ahmadabadi
Abstract:
This paper presents an innovative one-dimensional optimization of a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of the transonic compressor is redesigned based on the constant span-wise deHaller number and diffusion. The code is applied to extract compressor meridional plane and blade to blade geometry containing rotor and stator in order to design blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for regions near walls to capture boundary layer effects and behavior. RANS equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of simulations. Then, the capability of the design method is validated by CFD that is capable of predicting the performance map. The numerical results of new geometry show about 19% increase in pressure ratio and 11% improvement in overall efficiency of the transonic stage; however, the design point mass flow rate of the new compressor is 5.7% less than that of the original compressor.
Keywords: One dimensional design, deHaller number, radial equilibrium, transonic compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10487552 On Stability of Stiffened Cylindrical Shells with Varying Material Properties
Authors: M. Karami Khorramabadi, P. Khazaeinejad
Abstract:
The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.Keywords: Functionally graded material, Stability, Stiffened cylindrical shell, Finite element analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18557551 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses
Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin
Abstract:
Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.
Keywords: Problem solving-driven, MOOCs, teaching art, learning flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13347550 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms
Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil
Abstract:
The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22247549 Investigation and Congestion Management to Solvethe Over-Load Problem of Shiraz Substation in FREC
Authors: M Nayeripour, E. Azad, A. Roosta, T. Niknam
Abstract:
In this paper, the transformers over-load problem of Shiraz substation in Fars Regional Electric Company (FREC) is investigated for a period of three years plan. So the suggestions for using phase shifting transformer (PST) and unified power flow controller (UPFC) in order to solve this problem are examined in details and finally, some economical and practical designs will be given in order to solve the related problems. Practical consideration and using the basic and fundamental concept of powers in transmission lines in order to find the economical design are the main advantages of this research. The simulation results of the integrated overall system with different designs compare them base on economical and practical aspects to solve the over-load and loss-reduction.
Keywords: Congestion management, Phase shifting transformer(PST), Unified power flow controller (UPFC), Transmission lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20027548 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller
Authors: K. Boumediene, S. E. Belhenniche
Abstract:
This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.Keywords: propeller flow, CFD simulation, hydrodynamic performance, RANS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29147547 Adaptive Bidirectional Flow for Image Interpolation and Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15387546 Flow Visualization and Characterization of an Artery Model with Stenosis
Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson
Abstract:
Cardiovascular diseases, principally atherosclerosis, are responsible for 30% of world deaths. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis.It is increasingly recognized that the initiation and progression of disease and the occurrence of clinical events is a complex interplay between the local biomechanical environment and the local vascular biology. The aim of this study is to investigate the flow behavior through a stenosed artery. A physical experiment was performed using an artery model and blood analogue fluid. An axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. The flow field was measured using particle image velocimetry (PIV). Spherical particles with 20μm diameter were seeded in a water-glycerol-NaCl mixture. Steady flow Reynolds numbers are 250. The area of interest is the region after the stenosis where the flow separation occurs. The velocity field was measured and the velocity gradient was investigated. There was high particle concentration in the recirculation zone. High velocity gradient formed immediately after the stenosis throat created a lift force that enhanced particle migration to the flow separation area.
Keywords: Stenosis artery, Biofluid mechanics, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20037545 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach
Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti
Abstract:
This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19587544 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process
Authors: D. B. Gohil
Abstract:
Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.Keywords: Experimentation, forging, process modeling, strain distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13657543 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas
Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24817542 Does Material Choice Drive Sustainability of 3D Printing?
Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye
Abstract:
Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.
Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36097541 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate
Authors: R. Kiš, M. Malcho, M. Janovcová
Abstract:
This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behavior of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.
Keywords: Orifice plate, high-pressure pipeline, natural gas, CFD analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39017540 Design of a Constant Chord Single-Rotating Propeller using Lock and Goldstein Techniques
Authors: Samrand Rashahmadi, Morteza Abbaszadeh, Sana Hoseyni, Raziyeh Alizadeh
Abstract:
Design of a constant chord propeller is presented in this paper in order to reduce propeller-s design procedure-s costs. The design process was based on Lock and Goldstein-s techniques of propeller design and analysis. In order to calculate optimum chord of propeller, chord of a referential element is generalized as whole blades chord. The design outcome which named CS-X-1 is modeled & analyzed by CFD methods using K-ε: R.N.G turbulence model. Convergence of results of two codes proved that outcome results of design process are reliable. Design result is a two-blade propeller with a total diameter of 1.1 meter, radial velocity of 3000 R.P.M, efficiency above .75 and power coefficient near 1.05.Keywords: Single rotating propeller, Design, C.F.D. test, constant chord
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21007539 Strategies for Connectivity Configuration to Access e-Learning Resources: Case of Rural Secondary Schools in Tanzania
Authors: F. Simba, L. Trojer, N.H. Mvungi, B.M. Mwinyiwiwa, E.M. Mjema
Abstract:
In response to address different development challenges, Tanzania is striving to achieve its fourth attribute of the National Development Vision, i.e. to have a well educated and learned society by the year 2025. One of the most cost effective methods that can reach a large part of the society in a short time is to integrate ICT in education through e-learning initiatives. However, elearning initiatives are challenged by limited or lack of connectivity to majority of secondary schools, especially those in rural and remote areas. This paper has explores the possibility for rural secondary school to access online e-Learning resources from a centralized e- Learning Management System (e-LMS). The scope of this paper is limited to schools that have computers irrespective of internet connectivity, resulting in two categories schools; those with internet access and those without. Different connectivity configurations have been proposed according to the ICT infrastructure status of the respective schools. However, majority of rural secondary schools in Tanzania have neither computers nor internet connection. Therefore this is a challenge to be addressed for the disadvantaged schools to benefit from e-Learning initiatives.
Keywords: connectivity, configuration, e-Learning, replication, rural.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966