Search results for: binary data matrix model
12678 A New Analytical Approach for Free Vibration of Membrane from Wave Standpoint
Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar
Abstract:
In this paper, an analytical approach for free vibration analysis of rectangular and circular membranes is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for rectangular and circular membranes are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of membranes. Subsequently, the eigenvalue problem for free vibration of membrane is formulated and the equation of membrane natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.Keywords: Rectangular and circular membranes, propagation matrix, reflection matrix, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216512677 Secure Multiparty Computations for Privacy Preserving Classifiers
Authors: M. Sumana, K. S. Hareesha
Abstract:
Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.Keywords: Homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91912676 Investigation of New Method to Achieve Well Dispersed Multiwall Carbon Nanotubes Reinforced Al Matrix Composites
Authors: A.H.Javadi, Sh.Mirdamadi, M.A.Faghisani, S.Shakhesi
Abstract:
Nanostructured materials have attracted many researchers due to their outstanding mechanical and physical properties. For example, carbon nanotubes (CNTs) or carbon nanofibres (CNFs) are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The critical issues of CNT-reinforced MMCs include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. One of the major obstacles to the effective use of carbon nanotubes as reinforcements in metal matrix composites is their agglomeration and poor distribution/dispersion within the metallic matrix. In order to tap into the advantages of the properties of CNTs (or CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. Processing techniques used for synthesis of the composites have been studied with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. Modified mechanical alloying (ball milling) techniques have emerged as promising routes for the fabrication of carbon nanotube (CNT) reinforced metal matrix composites. In order to obtain a homogeneous product, good control of the milling process, in particular control of the ball movement, is essential. The control of the ball motion during the milling leads to a reduction in grinding energy and a more homogeneous product. Also, the critical inner diameter of the milling container at a particular rotational speed can be calculated. In the present work, we use conventional and modified mechanical alloying to generate a homogenous distribution of 2 wt. % CNT within Al powders. 99% purity Aluminium powder (Acros, 200mesh) was used along with two different types of multiwall carbon nanotube (MWCNTs) having different aspect ratios to produce Al-CNT composites. The composite powders were processed into bulk material by compaction, and sintering using a cylindrical compaction and tube furnace. Field Emission Scanning electron microscopy (FESEM), X-Ray diffraction (XRD), Raman spectroscopy and Vickers macro hardness tester were used to evaluate CNT dispersion, powder morphology, CNT damage, phase analysis, mechanical properties and crystal size determination. Despite the success of ball milling in dispersing CNTs in Al powder, it is often accompanied with considerable strain hardening of the Al powder, which may have implications on the final properties of the composite. The results show that particle size and morphology vary with milling time. Also, by using the mixing process and sonication before mechanical alloying and modified ball mill, dispersion of the CNTs in Al matrix improves.Keywords: multiwall carbon nanotube, Aluminum matrixcomposite, dispersion, mechanical alloying, sintering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232512675 Incremental Mining of Shocking Association Patterns
Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas
Abstract:
Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186712674 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8212673 Daily and Seasonal Changes of Air Pollution in Kuwait
Authors: H. Ettouney, A. AL-Haddad, S. Saqer
Abstract:
This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.
Keywords: Air pollution, Emission inventory, ISCST3 model, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242112672 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157312671 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.Keywords: Mathematical model, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222112670 Developing a Coronavirus Academic Paper Sorting Application
Authors: Christina A. van Hal, Xiaoqian Jiang, Luyao Chen, Yan Chu, Robert D. Jolly, Yaobin Lin, Jitian Zhao, Kang Lin Hsieh
Abstract:
The COVID-19 Literature Summary App, now live on the university website, was created for the primary purpose of enabling academicians and clinicians to quickly sort through the vast array of recent coronavirus publications by topics of interest. Multiple methods of summarizing and sorting the manuscripts were created. A summary page introduces the application function and capabilities, while an interactive map provides daily updates on infection, death, and recovery rates. A page with a pivot table allows publication sorting by topic, with an interactive data table that allows sorting topics by columns, as wells as the capability to view abstracts. Additionally, publications may be sorted by the medical topics they cover. We used the CORD-19 database to compile lists of publications. The data table can sort binary variables, allowing the user to pick desired publication topics, such as papers that describe COVID-19 symptoms. The application is primarily designed for use by researchers but can be used by anybody who wants a faster and more efficient means of locating papers of interest.
Keywords: COVID-19, literature summary, information retrieval, snorkel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46912669 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients
Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz
Abstract:
In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.
Keywords: Causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142512668 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.
Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16912667 Behavior Model Mapping and Transformation using Model-Driven Architecture
Authors: Mohammed Abdalla Osman Mukhtar, Azween Abdullah, Alan Giffin Downe
Abstract:
Model mapping and transformation are important processes in high level system abstractions, and form the cornerstone of model-driven architecture (MDA) techniques. Considerable research in this field has devoted attention to static system abstraction, despite the fact that most systems are dynamic with high frequency changes in behavior. In this paper we provide an overview of work that has been done with regard to behavior model mapping and transformation, based on: (1) the completeness of the platform independent model (PIM); (2) semantics of behavioral models; (3) languages supporting behavior model transformation processes; and (4) an evaluation of model composition to effect the best approach to describing large systems with high complexity.
Keywords: MDA; PIM, PSM, QVT, Model Transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176112666 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye
Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari
Abstract:
Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.
Keywords: Chitosan, clay, dye adsorption, hydrogels nanocomposites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101112665 Validation of the WAsP Model for a Terrain Surrounded by Mountainous Region
Authors: Mohammadamin Zanganeh, Vahid Khalajzadeh
Abstract:
The problems associated with wind predictions of WAsP model in complex terrain are already the target of several studies in the last decade. In this paper, the influence of surrounding orography on accuracy of wind data analysis of a train is investigated. For the case study, a site with complex surrounding orography is considered. This site is located in Manjil, one of the windiest cities of Iran. For having precise evaluation of wind regime in the site, one-year wind data measurements from two metrological masts are used. To validate the obtained results from WAsP, the cross prediction between each mast is performed. The analysis reveals that WAsP model can estimate the wind speed behavior accurately. In addition, results show that this software can be used for predicting the wind regime in flat sites with complex surrounding orography.Keywords: Complex terrain, Meteorological mast, WAsPmodel, Wind prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179012664 Image Analysis for Obturator Foramen Based on Marker-Controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator Foramen is a specific structure in Pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as Obturator Foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template as a preprocessing step for computation of Pelvic bone rotation on hip radiographs. This method consists of integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor and it is used to detect Obturator Foramen accurately. Marker-controlled Watershed segmentation is applied to separate Obturator Foramen from the background effectively. Then, Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for final extraction of Obturator Foramens. Finally, Pelvic bone rotation rate calculation for each hip radiograph is performed automatically to select and eliminate hip radiographs for further studies which depend on Pelvic bone angle measurements. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results demonstrated that the proposed method is able to segment Obturator Foramen with 96% accuracy.Keywords: Medical image analysis, marker-controlled watershed segmentation, segmentation of bone structures on hip radiographs, pelvic bone rotation rate, zernike moment feature descriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199312663 Ranking DMUs by Ideal PPS in Data Envelopment Analysis
Authors: V.Rezaie, M.Khanmohammady
Abstract:
An original DEA model is to evaluate each DMU optimistically, but the interval DEA Model proposed in this paper has been formulated to obtain an efficiency interval consisting of Evaluations from both the optimistic and the pessimistic view points. DMUs are improved so that their lower bounds become so large as to attain the maximum Value one. The points obtained by this method are called ideal points. Ideal PPS is calculated by ideal of efficiency DMUs. The purpose of this paper is to rank DMUs by this ideal PPS. Finally we extend the efficiency interval of a DMU under variable RTS technology.Keywords: Data envelopment analysis (DEA), Decision makingunit (DMU), Interval DEA, Ideal points, Ideal PPS, Return to scale(RTS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192612662 Analysis of P, d and 3He Elastically Scattered by 11B Nuclei at Different Energies
Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk
Abstract:
Elastic scattering of Protons and deuterons from 11B nuclei at different p, d energies have been analyzed within the framework of optical model code (ECIS88). The elastic scattering of 3He+11B nuclear system at different 3He energies have been analyzed using double folding model code (FRESCO). The real potential obtained from the folding model was supplemented by a phenomenological imaginary potential, and during the fitting process the real potential was normalized and the imaginary potential optimized. Volumetric integrals of the real and imaginary potential depths (JR, JW) have been calculated for 3He+11B system. The agreement between the experimental data and the theoretical calculations in the whole angular range is fairly good. Normalization factor Nr is calculated in the range between 0.70 and 1.236.
Keywords: Elastic scattering, optical model parameters, double folding model, nuclear density distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126612661 Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads
Authors: Barenten Suciu
Abstract:
Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.
Keywords: Bullet train, dynamical hunting, cylindrical wheels, damping, stability, creep, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76012660 Merging and Comparing Ontologies Generically
Authors: Xiuzhan Guo, Arthur Berrill, Ajinkya Kulkarni, Kostya Belezko, Min Luo
Abstract:
Ontology operations, e.g., aligning and merging, were studied and implemented extensively in different settings, such as, categorical operations, relation algebras, typed graph grammars, with different concerns. However, aligning and merging operations in the settings share some generic properties, e.g., idempotence, commutativity, associativity, and representativity, which are defined on an ontology merging system, given by a nonempty set of the ontologies concerned, a binary relation on the set of the ontologies modeling ontology aligning, and a partial binary operation on the set of the ontologies modeling ontology merging. Given an ontology repository, a finite subset of the set of the ontologies, its merging closure is the smallest subset of the set of the ontologies, which contains the repository and is closed with respect to merging. If idempotence, commutativity, associativity, and representativity properties are satisfied, then both the set of the ontologies and the merging closure of the ontology repository are partially ordered naturally by merging, the merging closure of the ontology repository is finite and can be computed, compared, and sorted efficiently, including sorting, selecting, and querying some specific elements, e.g., maximal ontologies and minimal ontologies. An ontology Valignment pair is a pair of ontology homomorphisms with a common domain. We also show that the ontology merging system, given by ontology V-alignment pairs and pushouts, satisfies idempotence, commutativity, associativity, and representativity properties so that the merging system is partially ordered and the merging closure of a given repository with respect to pushouts can be computed efficiently.
Keywords: Ontology aligning, ontology merging, merging system, poset, merging closure, ontology V-alignment pair, ontology homomorphism, ontology V-alignment pair homomorphism, pushout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33112659 Turbine Speed Variation Study in Gas Power Plant for an Active Generator
Authors: R. Kazemzadeh, J. M. Kauffmann
Abstract:
This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.Keywords: Power Generation, Energy Conversion, FrequencyControl, Matrix Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189712658 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.
Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42012657 Degradation Model of Optical Characteristics of Zno-Pigmented White Paint by Electron Radiation
Authors: Tian Hai, Yang Shengsheng, Jr., Wang Yi
Abstract:
Based on an analysis of the mechanism of degradation of optical characteristics of the ZnO-pigmented white paint by electron irradiation, a model of single molecular color centers is built. An equation that explains the relationship between the changes of variation of the ZnO-pigmented white paint-s spectrum absorptance and electron fluence is derived. The uncertain parameters in the equation can be calculated using the curve fitting by experimental data. The result indicates that the model can be applied to predict the degradation of optical characteristics of ZnO-pigmented white paint by electron radiation.
Keywords: ZnO-pigmented white pain, effects of electron radiation, optical characteristics degradation, prediction model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152812656 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays
Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang
Abstract:
This paper considers H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.
Keywords: H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161612655 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline
Authors: Zuodong Liang, Dong-Sheng Jeng
Abstract:
Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.Keywords: Pore pressure, 3D wave model, seabed liquefaction, pipeline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104012654 Spatial Time Series Models for Rice and Cassava Yields Based On Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.
Keywords: Bayesian method, Linear mixed model, Multivariate conditional autoregressive model, Spatial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224712653 VaR Forecasting in Times of Increased Volatility
Authors: Ivo Jánský, Milan Rippel
Abstract:
The paper evaluates several hundred one-day-ahead VaR forecasting models in the time period between the years 2004 and 2009 on data from six world stock indices - DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model mean using the ARMA processes with up to two lags and variance with one of GARCH, EGARCH or TARCH processes with up to two lags. The models are estimated on the data from the in-sample period and their forecasting accuracy is evaluated on the out-of-sample data, which are more volatile. The main aim of the paper is to test whether a model estimated on data with lower volatility can be used in periods with higher volatility. The evaluation is based on the conditional coverage test and is performed on each stock index separately. The primary result of the paper is that the volatility is best modelled using a GARCH process and that an ARMA process pattern cannot be found in analyzed time series.Keywords: VaR, risk analysis, conditional volatility, garch, egarch, tarch, moving average process, autoregressive process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142912652 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate
Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand
Abstract:
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481012651 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117412650 Trap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics
Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor
Abstract:
This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling currents have been calculated as a function of gate voltage for different gate dielectrics structures such as HfO2, Al2O3 and Si3N4 with EOT (equivalent oxide thickness) of 1.0 nm. The proposed model is compared and contrasted with santaurus simulation results to verify the accuracy of the model and excellent agreement is found between the analytical and simulated data. It is observed that proposed analytical model is suitable for different highk gate dielectrics simply by adjusting two fitting parameters. It was also shown that gate leakages reduced with the introduction of high-k gate dielectric in place of SiO2.Keywords: Analytical model, High-k gate dielectrics, inelastic trap assisted tunneling, metal–oxide–semiconductor (MOS) devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330712649 Spatial Analysis and Statistics for Zoning of Urban Areas
Authors: Benedetto Manganelli, Beniamino Murgante
Abstract:
The use of statistical data and of the neural networks, capable of elaborate a series of data and territorial info, have allowed the making of a model useful in the subdivision of urban places into homogeneous zone under the profile of a social, real estate, environmental and urbanist background of a city. The development of homogeneous zone has fiscal and urbanist advantages. The tools in the model proposed, able to be adapted to the dynamic changes of the city, allow the application of the zoning fast and dynamic.
Keywords: Homogeneous Urban Areas, Multidimensional Scaling, Neural Network, Real Estate Market, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931