Search results for: Total Vector Error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3929

Search results for: Total Vector Error

3059 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
3058 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity

Authors: J. Urbánek Jiří, Krahulec Josef, Johanidesová Jitka, F. Urbánek Jiří

Abstract:

This paper deals with using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In first part of paper, it will be introduced entities, operators, and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases, and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case, and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is necessary condition for the encompassment for both emergency events and the mitigation of organization´s damages. Uninterrupted and continuous cycling process brings for crisis management fruitfulness and it is good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.

Keywords: Blazons, computational assistance, DYVELOP method, critical infrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
3057 The Effection of Different Culturing Proportion of Deep Sea Water(DSW) to Surface Sea Water(SSW) in Reductive Ability and Phenolic Compositions of Sargassum Cristaefolium

Authors: H. L. Ku, K. C. Yang, S. Y. Jhou, S. C. Lee, C. S. Lin

Abstract:

Characterized as rich mineral substances, low temperature, few bacteria, and stability with numerous implementation aspects on aquaculture, food, drinking, and leisure, the deep sea water (DSW) development has become a new industry in the world. It has been report that marine algae contain various biologically active compounds. This research focued on the affections in cultivating Sagrassum cristaefolium with different concentration of deep sea water(DSW) and surface sea water(SSW). After two and four weeks, the total phenolic contents were compared in Sagrassum cristaefolium culturing with different ways, and the reductive activity of them was also be tried with potassium ferricyanide. Those fresh seaweeds were dried with oven and were ground to powder. Progressively, the marine algae we cultured was extracted by water under the condition with heating them at 90Ôäâ for 1hr.The total phenolic contents were be executed using Folin–Ciocalteu method. The results were explaining as follows: the highest total phenolic contents and the best reductive ability of all could be observed on the 1/4 proportion of DSW to SSW culturing in two weeks. Furthermore, the 1/2 proportion of DSW to SSW also showed good reductive ability and plentiful phenolic compositions. Finally, we confirmed that difference proportion of DSW and SSW is the major point relating to ether the total phenolic components or the reductive ability in the Sagrassum cristaefolium. In the future, we will use this way to mass production the marine algae or other micro algae on industry applications.

Keywords: deep sea water(DSW), surface sea water(SSW), phenolic contents, reductive ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
3056 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

 

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
3055 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times

Authors: M. Duran Toksarı, B. Uçarkuş

Abstract:

In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150- jobs problems. The proposed algorithms can find the same results in shorter time.

Keywords: Delivery times, learning effect, makespan, scheduling, total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
3054 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
3053 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems

Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
3052 Prioritising the TQM Enablers and IT Resources in the ICT Industry: An AHP Approach

Authors: Suby Khanam, Jamshed Siddiqui, Faisal Talib

Abstract:

Total Quality Management (TQM) is a managerial approach that improves the competitiveness of the industry, meanwhile Information technology (IT) was introduced with TQM for handling the technical issues which is supported by quality experts for fulfilling the customers’ requirement. Present paper aims to utilise AHP (Analytic Hierarchy Process) methodology to priorities and rank the hierarchy levels of TQM enablers and IT resource together for its successful implementation in the Information and Communication Technology (ICT) industry. A total of 17 TQM enablers (nine) and IT resources (eight) were identified and partitioned into 3 categories and were prioritised by AHP approach. The finding indicates that the 17 sub-criteria can be grouped into three main categories namely organizing, tools and techniques, and culture and people. Further, out of 17 sub-criteria, three sub-criteria: top management commitment and support, total employee involvement, and continuous improvement got highest priority whereas three sub-criteria such as structural equation modelling, culture change, and customer satisfaction got lowest priority. The result suggests a hierarchy model for ICT industry to prioritise the enablers and resources as well as to improve the TQM and IT performance in the ICT industry. This paper has some managerial implication which suggests the managers of ICT industry to implement TQM and IT together in their organizations to get maximum benefits and how to utilize available resources. At the end, conclusions, limitation, future scope of the study are presented.

Keywords: Analytic Hierarchy Process, Information Technology, Information and Communication Technology, Prioritization, Total Quality Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
3051 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: Channel estimation, OFDM, pilot-assist, VLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
3050 Image Transmission via Iterative Cellular-Turbo System

Authors: Ersin Gose, Kenan Buyukatak, Onur Osman, Osman N. Ucan

Abstract:

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Keywords: Iterative Cellular Image Processing Algorithm (ICIPA), Turbo Coding, Iterative Cellular Turbo System (IC-TS), Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
3049 Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs

Authors: Sirikarn Satimanont, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.

Keywords: Butanol production, Corn cobs, Phosphoric acid, Pretreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
3048 Antioxidant Activity of Germinated African Yam Bean (Sphenostylis stenocarpa) in Alloxan Diabetic Rats

Authors: Nneka N. Uchegbu

Abstract:

This study was conducted to investigate the effect of the antioxidant activity of germinated African Yam Bean (AYB) on oxidative stress markers in alloxan induced diabetic rat. Rats were randomized into three groups; control, diabetic and germinated AYB – treated diabetic rats. The Total phenol and flavonoid content and DPPH radical scavenging activity before and after germination were investigated. The glucose level, lipid peroxidation and reduced glutathione of the animals were also determined using standard technique for four weeks. Germination increased the total phenol, flavonoid and antioxidant activity of AYB extract by 19.14%, 32.28% and 57.25% respectively. The diabetic rats placed on germinated AYB diet had a significant decrease in the blood glucose and lipid peroxidation with a corresponding increase in glutathione (p<0.05). These results demonstrate that consumption of germinated AYB can be a good dietary supplement in inhibiting hyperglycemia/ hyperlipidemia and the prevention of diabetic complication associated with oxidative stress.

Keywords: African Yam Bean, Antioxidant, Diabetes, Total phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3270
3047 Computing Center Conditions for Non-analytic Vector Fields with Constant Angular Speed

Authors: Li Feng

Abstract:

We investigate the planar quasi-septic non-analytic systems which have a center-focus equilibrium at the origin and whose angular speed is constant. The system could be changed into an analytic system by two transformations, with the help of computer algebra system MATHEMATICA, the conditions of uniform isochronous center are obtained.

Keywords: Non-analytic, center–focus problem, Lyapunov constant, uniform isochronous center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
3046 Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. The features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums were determined. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which ac­counts for 70 to 83% of the total number of fatty acids. The share of monoenic acids accounts from 18 to 34%, while the share of unsaturated fatty acids - from 44 to 62% of the total number of unsaturated fatty acids fraction. Among the un­saturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).

Keywords: Fatty acids, lipids, microalgae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
3045 The Control Vector Scheme for Design of Planar Primitive PH curves

Authors: Ching-Shoei Chiang, Sheng-Hsin Tsai, James Chen

Abstract:

The PH curve can be constructed by given parameters, but the shape of the curve is not so easy to image from the value of the parameters. On the contract, Bézier curve can be constructed by the control polygon, and from the control polygon, we can image the figure of the curve. In this paper, we want to use the hodograph of Bézier curve to construct PH curve by selecting part of the control vectors, and produce other control vectors, so the property of PH curve exists.

Keywords: PH curve, hodograph, Bézier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
3044 A Perceptually Optimized Wavelet Embedded Zero Tree Image Coder

Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf

Abstract:

In this paper, we propose a Perceptually Optimized Embedded ZeroTree Image Coder (POEZIC) that introduces a perceptual weighting to wavelet transform coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to the coding quality obtained using the SPIHT algorithm only. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEZIC quality assessment. Our POEZIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) luminance masking and Contrast masking, 2) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting, 3) the Wavelet Error Sensitivity WES used to reduce the perceptual quantization errors. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Keywords: DWT, linear-phase 9/7 filter, 9/7 Wavelets Error Sensitivity WES, CSF implementation approaches, JND Just Noticeable Difference, Luminance masking, Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
3043 Quadrotor Black-Box System Identification

Authors: Ionel Stanculeanu, Theodor Borangiu

Abstract:

This paper presents a new approach in the identification of the quadrotor dynamic model using a black-box system for identification. Also the paper considers the problems which appear during the identification in the closed-loop and offers a technical solution for overcoming the correlation between the input noise present in the output

Keywords: System identification, UAV, prediction error method, quadrotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459
3042 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: Capacitated MRP, non-population search algorithms, linear programming, assembly flow shop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
3041 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

Authors: Sambit Prasad Kar, P.Palanisamy

Abstract:

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
3040 On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

Authors: Melih Turgut, José Luis López-Bonilla, Süha Yılmaz

Abstract:

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated.

Keywords: Lorentzian 5-space, Frenet-Serret Invariants, Nonnull Curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3039 Selected Ethnomedicinal Plants of Northern Surigao Del Sur: Their Antioxidant Activities in Terms of Total Phenolics, ABTS Radical Cation Decolorization Power, and Ferric Reducing Ability

Authors: Gemma A. Gruyal

Abstract:

Plants can contain a wide variety of substances with antioxidative properties which are associated with important health benefits. These positive health effects are of great importance at a time when the environment is laden with many toxic substances. Five selected herbal plants namely, Mimosa pudica, Phyllanthus niruri, Ceiba pentandra, Eleusine polydactyla and Trema amboinensi, were chosen for the experiment to investigate their total phenolics content and antioxidant activities using ABTS radical cation decolorization power, and ferric reducing antioxidant power. The total phenolic content of each herbal plants ranges from 0.84 to 42.59 mg gallic acid equivalent/g. The antioxidant activity in the ABTS radical cation decolorization power varies from 0.005 to 0.362 mg trolox equivalent/g and the FRAP ranges from 0.30 to 28.42 mg gallic acid equivalent/g. Among the five medicinal plants, Mimosa pudica has been an excellent performer in terms of the 3 parameters measured; it is followed by Phyllanthus niruri. The 5 herbal plants do not have equivalent antioxidant power. The relative high values for M. pudica and P. niruri supports the medicinal value of both plants. The total phenolics, ABTS and FRAP correlate strongly with one another.

Keywords: ABTS, FRAP, leaf extracts, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
3038 Development System for Emotion Detection Based on Brain Signals and Facial Images

Authors: Suprijanto, Linda Sari, Vebi Nadhira , IGN. Merthayasa. Farida I.M

Abstract:

Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.

Keywords: Multimodal Emotion Detection, EEG, Facial Image, Optical Flow, compass mapping, Brain Wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
3037 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo

Abstract:

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.

Keywords: Neural networks, groundwater depth, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
3036 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
3035 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: Bilinear systems, state space model, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
3034 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks

Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin

Abstract:

Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.

Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
3033 Comparative Study on the Antioxidant Activity of Leaf Extract and Carotenoids Extract from Ipomoea batatas var. Oren (Sweetpotato) Leaves

Authors: Seow-Mun Hue, Amru Nasrulhaq Boyce, Chandran Somasundram

Abstract:

Ipomoea batatas (Sweetpotato) is currently ranked sixth in the total world food production and are planted mainly for their storage roots. The present study was undertaken to evaluate and compare the antioxidant properties of the leaf and carotenoids extract from the Ipomoea batatas var. Oren leaves. Total flavonoids in the leaf extract was 144.6 ± 40.5 μg/g compared to 114.86 ± 4.35 μg/g catechin equivalent in the carotenoids extract. Total polyphenols in the leaf extracts (3.470 ± 0.024 GAE g/100g DW) was slightly higher compared to carotenoids extract (2.994 ± 0.078 GAE g/100g DW). The carotenoids extract marked a higher radical scavenging capacity with the IC50= 491.86 μg/ml compared to leaf extract (IC50= 545.39 μg/ml). Concentration-dependent reducing activity was observed for both extracts. Thus, the carotenoids extraction process retained most of the antioxidant capacity from the leaves and can be made into potential natural yellow dye with antioxidant property.

Keywords: antioxidants, carotenoids extract, Ipomoea batatas, sweetpotato leaves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
3032 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: Built-up area extraction, Google earth engine, adaptive thresholding method, rapid mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
3031 An Evaluation Method for Two-Dimensional Position Errors and Assembly Errors of a Rotational Table on a 4 Axis Machine Tool

Authors: Jooho Hwang, Chang-Kyu Song, Chun-Hong Park

Abstract:

This paper describes a method to measure and compensate a 4 axes ultra-precision machine tool that generates micro patterns on the large surfaces. The grooving machine is usually used for making a micro mold for many electrical parts such as a light guide plate for LCD and fuel cells. The ultra precision machine tool has three linear axes and one rotational table. Shaping is usually used to generate micro patterns. In the case of 50 μm pitch and 25 μm height pyramid pattern machining with a 90° wedge angle bite, one of linear axis is used for long stroke motion for high cutting speed and other linear axis are used for feeding. The triangular patterns can be generated with many times of long stroke of one axis. Then 90° rotation of work piece is needed to make pyramid patterns with superposition of machined two triangular patterns. To make a two dimensional positioning error, straightness of two axes in out of plane, squareness between the each axis are important. Positioning errors, straightness and squarness were measured by laser interferometer system. Those were compensated and confirmed by ISO230-6. One of difficult problem to measure the error motions is squareness or parallelism of axis between the rotational table and linear axis. It was investigated by simultaneous moving of rotary table and XY axes. This compensation method is introduced in this paper.

Keywords: Ultra-precision machine tool, muti-axis errors, squraness, positioning errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
3030 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593