Search results for: Fuzzy Cognitive Map(FCM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1277

Search results for: Fuzzy Cognitive Map(FCM)

407 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions

Authors: Manisha Rathi, Thierry Chaussalet

Abstract:

Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.

Keywords: Admission, Fuzzy, Regression, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
406 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods

Authors: Ε. Giovanis

Abstract:

The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.

Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
405 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki

Abstract:

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
404 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills

Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu

Abstract:

This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.

Keywords: Young Children, Autism, Mathematics, Curriculum, teaching and learning, children with special needs, Project MIND.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
403 The Emotions in Consumers’ Decision Making: Review of Empirical Studies

Authors: Mikel Alonso López

Abstract:

This paper explores, in depth, the idea that emotions are present in all consumer decision making processes, meaning that purchase decisions have never been purely cognitive or as they traditionally have been defined, rational. Human beings, in all kinds of decisions, has "always" used neural systems related to emotions along with neural systems related to cognition, regardless of the type of purchase or the product or service in question. Therefore, all purchase decisions are, at the same time, cognitive and emotional. This paper presents an analysis of the main contributions of researchers in this regard.

Keywords: Emotions, decision making, consumer behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
402 Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm

Authors: R. Srinivasa Rao

Abstract:

This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.

Keywords: Distribution systems, Capacitor allocation, Loss reduction, Fuzzy, PGSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
401 Dual-Task – Immersion in the Interactions of Simultaneously Performed Tasks

Authors: M. Liebherr, P. Schubert, S. Kersten, C. Dietz, L. Franz, C. T. Haas

Abstract:

With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of taskinterrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematisation of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system.

Keywords: Dual-task, interference, cognition, measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
400 On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function

Authors: Gaurav Kumar, Rakesh Kumar Bajaj

Abstract:

The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of  and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.

Keywords: Assignment problem, Interval-valued Intuitionistic Fuzzy Sets, Similarity Measures, score function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013
399 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis

Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani

Abstract:

Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.

Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
398 Cognitive Virtual Exploration for Optimization Model Reduction

Authors: Livier Serna, Xavier Fischer, Fouad Bennis

Abstract:

In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.

Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
397 A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks

Authors: Yao-Tien Wang, Hsiang-Fu Yu, Dung Chen Chiou

Abstract:

In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.

Keywords: radio resource management, grey prediction, fuzzylogic control, wireless networks, quality of service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
396 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
395 A Proposed Framework for Visualization to Teach Computer Science

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.

Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
394 Adaptive Early Packet Discarding Policy Based on Two Traffic Classes

Authors: Rawya Rizk, Rehab Abdel-Kader, Rabab Ramadan

Abstract:

Unlike the best effort service provided by the internet today, next-generation wireless networks will support real-time applications. This paper proposes an adaptive early packet discard (AEPD) policy to improve the performance of the real time TCP traffic over ATM networks and avoid the fragmentation problem. Three main aspects are incorporated in the proposed policy. First, providing quality-of-service (QoS) guaranteed for real-time applications by implementing a priority scheduling. Second, resolving the partially corrupted packets problem by differentiating the buffered cells of one packet from another. Third, adapting a threshold dynamically using Fuzzy logic based on the traffic behavior to maintain a high throughput under a variety of load conditions. The simulation is run for two priority classes of the input traffic: real time and non-real time classes. Simulation results show that the proposed AEPD policy improves throughput and fairness over that using static threshold under the same traffic conditions.

Keywords: Early packet discard, Fuzzy logic, packet dropping policies, quality-of-service (QoS), TCP over ATM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
393 Sidelobe Reduction in Cognitive Radio Systems Using Hybrid Technique

Authors: Atif Elahi, Ijaz Mansoor Qureshi, Mehreen Atif, Noor Gul

Abstract:

Orthogonal frequency division multiplexing (OFDM) is one of the best candidates for dynamic spectrum access due to its flexibility of spectrum shaping. However, the high sidelobes of the OFDM signal that result in high out-of-band radiation, introduce significant interference to the users operating in its vicinity. This problem becomes more critical in cognitive radio (CR) system that enables the secondary users (SUs) users to access the spectrum holes not used by the primary users (PUs) at that time. In this paper, we present a generalized OFDM framework that has a capability of describing any sidelobe suppression techniques, despite of whether one or a number of techniques are used. Based on that framework, we propose cancellation carrier (CC) technique in conjunction with the generalized sidelobe canceller (GSC) to reduce the out-of-band radiation in the region where the licensed users are operating. Simulation results show that the proposed technique can reduce the out-of-band radiation better when compared with the existing techniques found in the literature.

Keywords: Cognitive radio, cancellation carriers, generalized sidelobe canceller, out-of-band radiation, orthogonal frequency division multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
392 Influence of Ambiguity Cluster on Quality Improvement in Image Compression

Authors: Safaa Al-Ali, Ahmad Shahin, Fadi Chakik

Abstract:

Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.

Keywords: Ambiguity Cluster, Anisotropic Diffusion, Fuzzy Clustering, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
391 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention

Authors: Paula A. Cruise, Carvell McLeary

Abstract:

Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.

Keywords: Context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
390 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
389 Distributed Relay Selection and Channel Choice in Cognitive Radio Network

Authors: Hao He, Shaoqian Li

Abstract:

In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.

Keywords: cognitive radio, cooperative communication, relay selection, channel choice, regret-matching learning, correlated equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
388 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
387 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor

Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang

Abstract:

A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.

Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4020
386 Turkey in Minds: Cognitive and Social Representations of "East" and "West"

Authors: Feyzan Tuzkaya, Nihan S. Soylu, Çağlar Solak, Hilal Peker, Mehmet Peker, Kemal Özeralp, Ceren Mete, Ezgi Mehmetoğlu, Mehmet Karasu, Cihan Elçi, Ece Akca, Melek Göregenli

Abstract:

Perception, evaluation and representation of the environment have been the subject of many disciplines including psychology, geography and architecture. In environmental and social psychology literature there are several evidences which suggest that cognitive representations about a place consisted of not only geographic items but also social and cultural. Mental representations of residence area or a country are influenced and determined by social-demographics, the physical and social context. Thus, all mental representations of a given place are also social representations. Cognitive maps are the main and common instruments that are used to identify spatial images and the difference between physical and subjective environments. The aim of the current study is investigating the mental and social representations of Turkey in university students’ minds. Data was collected from 249 university students from different departments (i.e. psychology, geography, history, tourism departments) of Ege University. Participants were requested to reflect Turkey in their mind onto the paper drawing sketch maps. According to the results, cognitive maps showed geographic aspects of Turkey as well as the context of symbolic, cultural and political reality of Turkey. That is to say, these maps had many symbolic and verbal items related to critics on social and cultural problems, ongoing ethnic and political conflicts, and actual political agenda of Turkey. Additionally, one of main differentiations in these representations appeared in terms of the East and West side of the Turkey, and the representations of the East and West was varied correspondingly participants’ cultural background, their ethnic values, and where they have born. The results of the study were discussed in environmental and social psychological perspective considering cultural and social values of Turkey and current political circumstances of the country.

Keywords: Cognitive maps, East and West, politics, social representations, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
385 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
384 Effect of Increasing Road Light Luminance on Night Driving Performance of Older Adults

Authors: Said M. Easa, Maureen J. Reed, Frank Russo, Essam Dabbour, Atif Mehmood, Kathryn Curtis

Abstract:

The main objective of this study was to determine if a minimal increase in road light level (luminance) could lead to improved driving performance among older adults. Older, middleaged and younger adults were tested in a driving simulator following vision and cognitive screening. Comparisons were made for the performance of simulated night driving under two road light conditions (0.6 and 2.5 cd/m2). At each light level, the effects of self reported night driving avoidance were examined along with the vision/cognitive performance. It was found that increasing road light level from 0.6 cd/m2 to 2.5 cd/m2 resulted in improved recognition of signage on straight highway segments. The improvement depends on different driver-related factors such as vision and cognitive abilities, and confidence. On curved road sections, the results showed that driver-s performance worsened. It is concluded that while increasing road lighting may be helpful to older adults especially for sign recognition, it may also result in increased driving confidence and thus reduced attention in some driving situations.

Keywords: Driving, older adults, night-time, road lighting, attention, simulation, curves, signs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
383 Exploration of Autistic Children using Case Based Reasoning System with Cognitive Map

Authors: Ebtehal Alawi Alsaggaf, Shehab A. Gamalel-Din

Abstract:

Exploring an autistic child in Elementary school is a difficult task that must be fully thought out and the teachers should be aware of the many challenges they face raising their child especially the behavioral problems of autistic children. Hence there arises a need for developing Artificial intelligence (AI) Contemporary Techniques to help diagnosis to discover autistic people. In this research, we suggest designing architecture of expert system that combine Cognitive Maps (CM) with Case Based Reasoning technique (CBR) in order to reduce time and costs of traditional diagnosis process for the early detection to discover autistic children. The teacher is supposed to enter child's information for analyzing by CM module. Then, the reasoning processor would translate the output into a case to be solved a current problem by CBR module. We will implement a prototype for the model as a proof of concept using java and MYSQL. This will be provided a new hybrid approach that will achieve new synergies and improve problem solving capabilities in AI. And we will predict that will reduce time, costs, the number of human errors and make expertise available to more people who want who want to serve autistic children and their families.

Keywords: Autism, Cognitive Maps (CM), Case Based Reasoning technique (CBR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
382 Online Control of Knitted Fabric Quality: Loop Length Control

Authors: Dariush Semnani, Mohammad Sheikhzadeh

Abstract:

Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.

Keywords: Circular knitting, Radon transformation, Knittedfabric, Regularity, Fuzzy control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3674
381 Physical Activity and Cognitive Functioning Relationship in Children

Authors: Comfort Mokgothu

Abstract:

This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.

Keywords: Decision making, fitness, information processing, reaction time, cognition movement time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
380 Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Authors: FH. Sarieddeen, R. El Berbari, S. Imad, J. Abdel Baki, M. Hamad, R. Blanc, A. Nakib, Y.Chenoune

Abstract:

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

Keywords: Brain arteriovenous malformation (BAVM), 3-D rotational angiography (3DRA), K-Means (KM) clustering, Fuzzy CMeans (FCM) clustering, Expectation Maximization (EM) clustering, volume rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
379 The Mechanism Underlying Empathy-Related Helping Behavior: An Investigation of Empathy-Attitude- Action Model

Authors: Wan-Ting Liao, Angela K. Tzeng

Abstract:

Empathy has been an important issue in psychology, education, as well as cognitive neuroscience. Empathy has two major components: cognitive and emotional. Cognitive component refers to the ability to understand others’ perspectives, thoughts, and actions, whereas emotional component refers to understand how others feel. Empathy can be induced, attitude can then be changed, and with enough attitude change, helping behavior can occur. This finding leads us to two questions: is attitude change really necessary for prosocial behavior? And, what roles cognitive and affective empathy play? For the second question, participants with different psychopathic personality (PP) traits are critical because high PP people were found to suffer only affective empathy deficit. Their cognitive empathy shows no significant difference from the control group. 132 college students voluntarily participated in the current three-stage study. Stage 1 was to collect basic information including Interpersonal Reactivity Index (IRI), Psychopathic Personality Inventory-Revised (PPI-R), Attitude Scale, Visual Analogue Scale (VAS), and demographic data. Stage two was for empathy induction with three controversial scenarios, namely domestic violence, depression with a suicide attempt, and an ex-offender. Participants read all three stories and then rewrite the stories by one of two perspectives (empathetic vs. objective). They would then complete the VAS and Attitude Scale one more time for their post-attitude and emotional status. Three IVs were introduced for data analysis: PP (High vs. Low), Responsibility (whether or not the character is responsible for what happened), and Perspective-taking (Empathic vs. Objective). Stage 3 was for the action. Participants were instructed to freely use the 17 tokens they received as donations. They were debriefed and interviewed at the end of the experiment. The major findings were people with higher empathy tend to take more action in helping. Attitude change is not necessary for prosocial behavior. The controversy of the scenarios and how familiar participants are towards target groups play very important roles. Finally, people with high PP tend to show more public prosocial behavior due to their affective empathy deficit. Pre-existing value and belief as well as recent dramatic social events seem to have a big impact and possibly reduce the effect of the independent variables (IV) in our paradigm.

Keywords: Affective empathy, attitude, cognitive empathy, prosocial behavior, psychopathic traits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
378 A Cognitive Measurement of Complexity and Comprehension for Object-Oriented Code

Authors: Amit Kumar Jakhar, Kumar Rajnish

Abstract:

Inherited complexity is one of the difficult tasks in software engineering field. Further, it is said that there is no physical laws or standard guidelines suit for designing different types of software. Hence, to make the software engineering as a matured engineering discipline like others, it is necessary that it has its own theoretical frameworks and laws. Software designing and development is a human effort which takes a lot of time and considers various parameters for successful completion of the software. The cognitive informatics plays an important role for understanding the essential characteristics of the software. The aim of this work is to consider the fundamental characteristics of the source code of Object-Oriented software i.e. complexity and understandability. The complexity of the programs is analyzed with the help of extracted important attributes of the source code, which is further utilized to evaluate the understandability factor. The aforementioned characteristics are analyzed on the basis of 16 C++ programs by distributing them to forty MCA students. They all tried to understand the source code of the given program and mean time is taken as the actual time needed to understand the program. For validation of this work, Briand’s framework is used and the presented metric is also evaluated comparatively with existing metric which proves its robustness.

Keywords: Software metrics, object-oriented, complexity, cognitive weight, understandability, basic control structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123