Search results for: Data Centric Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11074

Search results for: Data Centric Approach

10204 The Factors Influencing Successful Implementation of E-Commerce within SMEs Businesses

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research was to identify factors that influenced the success of e-commerce implementation within SMEs businesses. In order to achieve the objectives of this research, the researcher collected data from random firms in Thailand, both the users and those who are not using the e-commerce. The data was comprised of the results of 310 questionnaires, as well as 10 interviews with owner/managers of businesses who are currently using e-commerce successfully. The data were analyzed by using descriptive statistics, which included frequency, percentages, mean, and the standard deviation of pertinent factors. Independent t-test and one-way ANOVA test were also used. The findings of this research revealed that 50% of all the firms surveyed had e-commerce website, whereas, over 20% of all firms surveyed had developing an ecommerce strategy. The result findings also indicate that organizational factors, technological factors and environment factors as significant factors effecting success of e-commerce implementation in SMEs. From the hypotheses testing, the findings revealed that the different level of support use ecommerce by owner/manager had different success in e-commerce implementation. Moreover, the difference in e-commerce management approach affected the success in terms of higher total sales for the business or higher number of retained or returning customers.

Keywords: Electronic commerce, Implementation of ECommerce, small and medium sized enterprises, SMEs, Website, success factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5360
10203 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies

Authors: T. S. Myers, J. Trevathan

Abstract:

Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.

Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
10202 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: Multi-disciplinary optimization, aircraft load, finite element analysis, Stick Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
10201 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: Adsorption, mathematical modeling, nanocarbons, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
10200 An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das

Abstract:

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
10199 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: Aggregate angularity, asphalt concrete, permanent deformation, rutting prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
10198 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
10197 Effective Communication with the Czech Customers 50+ in the Financial Market

Authors: K. Matušínská, H. Starzyczná, M. Stoklasa

Abstract:

The paper deals with finding and describing of the effective marketing communication forms relating to the segment 50+ in the financial market in the Czech Republic. The segment 50+ can be seen as a great marketing potential in the future but unfortunately the Czech financial institutions haven´t still reacted enough to this fact and they haven´t prepared appropriate marketing programs for this customers´ segment. Demographic aging is a fundamental characteristic of the current European population evolution but the perspective of further population aging is more noticeable in the Czech Republic. This paper is based on data from one part of primary marketing research. Paper determinates the basic problem areas as well as definition of marketing communication in the financial market, defining the primary research problem, hypothesis and primary research methodology. Finally suitable marketing communication approach to selected sub-segment at age of 50-60 years is proposed according to marketing research findings.

Keywords: Population aging in the Czech Republic, segment 50+, financial services, marketing communication, marketing research, marketing communication approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
10196 A Search Algorithm for Solving the Economic Lot Scheduling Problem with Reworks under the Basic Period Approach

Authors: Yu-Jen Chang, Shih-Chieh Chen, Yu-Wei Kuo

Abstract:

In this study, we are interested in the economic lot scheduling problem (ELSP) that considers manufacturing of the serviceable products and remanufacturing of the reworked products. In this paper, we formulate a mathematical model for the ELSP with reworks using the basic period approach. In order to solve this problem, we propose a search algorithm to find the cyclic multiplier ki of each product that can be cyclically produced for every ki basic periods. This research also uses two heuristics to search for the optimal production sequence of all lots and the optimal time length of the basic period so as to minimize the average total cost. This research uses a numerical example to show the effectiveness of our approach.

Keywords: Economic lot, reworks, inventory, basic period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
10195 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map

Authors: Alexandros Leontitsis, Archana P. Sangole

Abstract:

This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.

Keywords: Parameter estimation, self-organizing feature maps, spherical topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
10194 A New Approach for Recoverable Timestamp Ordering Schedule

Authors: Hassan M. Najadat

Abstract:

A new approach for timestamp ordering problem in serializable schedules is presented. Since the number of users using databases is increasing rapidly, the accuracy and needing high throughput are main topics in database area. Strict 2PL does not allow all possible serializable schedules and so does not result high throughput. The main advantages of the approach are the ability to enforce the execution of transaction to be recoverable and the high achievable performance of concurrent execution in central databases. Comparing to Strict 2PL, the general structure of the algorithm is simple, free deadlock, and allows executing all possible serializable schedules which results high throughput. Various examples which include different orders of database operations are discussed.

Keywords: Concurrency control, schedule, timestamp, transaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
10193 Novel Approach for Wideband VNA by Sixport Principle

Authors: Tomáš Urbanec

Abstract:

Paper presents simple sixport principle and its frequency bandwidth. The novel multisixport approach is presented with its possibilities, typical parameters and frequency bandwidth. Practical implementation is shown with its measurement parameters and calibration. The bandwidth circa 1:100 is obtained.

Keywords: microwave measurement, sixport, VNA, wideband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
10192 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: Service Robot, Object Recognition, 3D Sensors, Plane Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
10191 Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator

Authors: A. Izadbakhsh, M. M. Fateh, M. A. Sadrnia

Abstract:

A multivariable discontinuous feedback linearization approach is proposed to position control of an electrically driven fast robot manipulator. A desired performance is achieved by selecting a useful controller and suitable sampling rate and considering saturation for actuators. There is a high flexibility to apply the proposed control approach on different electrically driven manipulators. The control approach can guarantee the stability and satisfactory tracking performance. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a desired performance for control system under technical specifications.

Keywords: Fast robot, feedback linearization, multivariabledigital control, PUMA560.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
10190 Exploring the Combinatorics of Motif Alignments Foraccurately Computing E-values from P-values

Authors: T. Kjosmoen, T. Ryen, T. Eftestøl

Abstract:

In biological and biomedical research motif finding tools are important in locating regulatory elements in DNA sequences. There are many such motif finding tools available, which often yield position weight matrices and significance indicators. These indicators, p-values and E-values, describe the likelihood that a motif alignment is generated by the background process, and the expected number of occurrences of the motif in the data set, respectively. The various tools often estimate these indicators differently, making them not directly comparable. One approach for comparing motifs from different tools, is computing the E-value as the product of the p-value and the number of possible alignments in the data set. In this paper we explore the combinatorics of the motif alignment models OOPS, ZOOPS, and ANR, and propose a generic algorithm for computing the number of possible combinations accurately. We also show that using the wrong alignment model can give E-values that significantly diverge from their true values.

Keywords: Motif alignment, combinatorics, p-value, E-value, OOPS, ZOOPS, ANR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
10189 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
10188 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
10187 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
10186 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems

Authors: Ebregbe David, Deng Weibo

Abstract:

The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.

Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
10185 Power Saving System in Green Data Center

Authors: Joon-young Jung, Dong-oh Kang, Chang-seok Bae

Abstract:

Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.

Keywords: Data Center, Green IT, Management Server, Power Saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
10184 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design. 

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
10183 Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies

Authors: M. N. Osman Zahid, K. Case, D. Watts

Abstract:

This paper reports an advanced approach in the application of CNC machining for rapid manufacturing processes (CNC-RM). The aim of this study is to improve the quality of machined parts by introducing different cutting tools during finishing operations. As the cutting is performed in different directions, the surfaces presented on part can be classified into several categories. Therefore, suitable cutting tools are assigned to machine particular surfaces and to improve the quality. Experimental studies have been carried out by fabricating several parts based on the suggested approach. The results provide further support for implementing this approach in rapid machining processes.

Keywords: CNC machining, End mill tool, Finishing operation, Rapid manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
10182 Exploring the Challenges to Usage of Building and Construction Cost Indices in Ghana

Authors: J. J. Gyimah, E. Kissi, S. Osei-Tutu, C. D. Adobor, T. Adjei-Kumi, E. Osei-Tutu

Abstract:

Price fluctuation contract is imperative and of paramount essence in the construction industry as it provides adequate relief and cushioning for changes in the prices of input resources during construction. As a result, several methods have been devised to better help in arriving at fair recompense in the event of price changes. However, stakeholders often appear not to be satisfied with the existing methods of fluctuation evaluation, ostensibly because of the challenges associated with them. The aim of this study was to identify the challenges to usage of building construction cost indices in Ghana. Data were gathered from contractors and quantity surveying firms. The study utilized survey questionnaire approach to elicit responses from the contractors and the consultants. Data gathered were analyzed scientifically, using the Relative Importance Index (RII) to rank the problems associated with the existing methods. The findings revealed the following among others: late release of data; inadequate recovery of costs; and work items of interest not included in the published indices as the main challenges of the existing methods. Findings provided useful lessons for policy makers and practitioners in decision making towards the usage and improvement of available indices.

Keywords: Building construction cost indices, challenges, usage, Ghana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
10181 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: Roughness progression, empirical model, pavement performance, heavy duty pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
10180 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification

Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman

Abstract:

In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.

Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
10179 Scaling up Potato Economic Opportunities: Evaluation of Youths Participation in Potato Value Chain in Nigeria

Authors: Chigozirim N. Onwusiribe, Jude A. Mbanasor

Abstract:

The potato value chain when harnessed can engage numerous youths and aid in the fight against poverty, malnutrition and unemployment. This study seeks to evaluate the level of youth participation in the potato value chain in Nigeria. Specifically, this study will examine the extent of youth participation in potato value chain, analyze the cost, benefits and sustainability of youth participation in the potato value chain, identify the factors that can propel or hinder youth participation in the potato value chain and make recommendations that will result in the increase in youth employment in the potato value chain. This study was conducted in the North Central and South East geopolitical zones of Nigeria. A multi stage sampling procedure was used to select 540 youths from the study areas. Focused group discussions and survey approach was used to elicit the required data. The data were analyzed using statistical and econometric tools. The study revealed that the potato value chain is very profitable.

Keywords: Potato, youths, value, chain, participation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
10178 On Phase Based Stereo Matching and Its Related Issues

Authors: Andr´as R¨ovid, Takeshi Hashimoto

Abstract:

The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.

Keywords: Stereo matching, Sub-pixel accuracy, phase correlation, SVD, NSSD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
10177 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
10176 The Advantages of Integration for Social Systems – Evidence from the Automobile Industry

Authors: Waldemiro Francisco Sorte Junior

Abstract:

The Japanese integrative approach to social systems can be observed in supply chain management as well as in the relationship between public and private sectors. Both the Lean Production System and the Developmental State Model are characterized by efforts towards the achievement of mutual goals, resulting in initiatives for capacity building which emphasize the system level. In Brazil, although organizations undertake efforts to build capabilities at the individual and organizational levels, the system level is being neglected. Fieldwork data confirmed the findings of other studies in terms of the lack of integration in supply chain management in the Brazilian automobile industry. Moreover, due to the absence of an active role of the Brazilian state in its relationship with the private sector, automakers are not fully exploiting the opportunities in the domestic and regional markets. For promoting a higher level of economic growth as well as to increase the degree of spill-over of technologies and techniques, a more integrative approach is needed.

Keywords: Integration, Lean Production System, DevelopmentalState Model, Brazilian automobile industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
10175 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung

Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner

Abstract:

Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.

Keywords: lung cancer, micro arrays, data mining, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754