Search results for: Counter Propagation Neural Networks
1937 View-Point Insensitive Human Pose Recognition using Neural Network
Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung
Abstract:
This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.Keywords: Computer vision, neural network, pose recognition, view-point insensitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13291936 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.
Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001935 Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator
Abstract:
Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.
Keywords: Ad hoc Network, energy consumption, Glomosim, routing protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21361934 Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales
Abstract:
By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.
Keywords: Anti-periodic solution, coincidence degree, CGSICNNs, impulse, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13151933 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria
Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero
Abstract:
Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.
Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18401932 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam
Abstract:
The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731931 An Efficient Data Collection Approach for Wireless Sensor Networks
Authors: Hanieh Alipour, Alireza Nemaney Pour
Abstract:
One of the most important applications of wireless sensor networks is data collection. This paper proposes as efficient approach for data collection in wireless sensor networks by introducing Member Forward List. This list includes the nodes with highest priority for forwarding the data. When a node fails or dies, this list is used to select the next node with higher priority. The benefit of this node is that it prevents the algorithm from repeating when a node fails or dies. The results show that Member Forward List decreases power consumption and latency in wireless sensor networks.Keywords: Data Collection, Wireless Sensor Network, SensorNode, Tree-Based
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24111930 Application of Artificial Neural Network to Classification Surface Water Quality
Authors: S. Wechmongkhonkon, N.Poomtong, S. Areerachakul
Abstract:
Water quality is a subject of ongoing concern. Deterioration of water quality has initiated serious management efforts in many countries. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (TColiform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of canals in Dusit district in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 96.52% in classifying the water quality of Dusit district canal in Bangkok Subsequently, this encouraging result could be applied with plan and management source of water quality.Keywords: artificial neural network, classification, surface water quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32101929 Investigating Intrusion Detection Systems in MANET and Comparing IDSs for Detecting Misbehaving Nodes
Authors: Marjan Kuchaki Rafsanjani, Ali Movaghar, Faroukh Koroupi
Abstract:
As mobile ad hoc networks (MANET) have different characteristics from wired networks and even from standard wireless networks, there are new challenges related to security issues that need to be addressed. Due to its unique features such as open nature, lack of infrastructure and central management, node mobility and change of dynamic topology, prevention methods from attacks on them are not enough. Therefore intrusion detection is one of the possible ways in recognizing a possible attack before the system could be penetrated. All in all, techniques for intrusion detection in old wireless networks are not suitable for MANET. In this paper, we classify the architecture for Intrusion detection systems that have so far been introduced for MANETs, and then existing intrusion detection techniques in MANET presented and compared. We then indicate important future research directions.Keywords: Intrusion Detection System(IDS), Misbehavingnodes, Mobile Ad Hoc Network(MANET), Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20261928 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose an aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.
Keywords: Aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5131927 Establishing Pairwise Keys Using Key Predistribution Schemes for Sensor Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
Designing cost-efficient, secure network protocols for Wireless Sensor Networks (WSNs) is a challenging problem because sensors are resource-limited wireless devices. Security services such as authentication and improved pairwise key establishment are critical to high efficient networks with sensor nodes. For sensor nodes to correspond securely with each other efficiently, usage of cryptographic techniques is necessary. In this paper, two key predistribution schemes that enable a mobile sink to establish a secure data-communication link, on the fly, with any sensor nodes. The intermediate nodes along the path to the sink are able to verify the authenticity and integrity of the incoming packets using a predicted value of the key generated by the sender’s essential power. The proposed schemes are based on the pairwise key with the mobile sink, our analytical results clearly show that our schemes perform better in terms of network resilience to node capture than existing schemes if used in wireless sensor networks with mobile sinks.Keywords: Wireless Sensor Networks, predistribution scheme, cryptographic techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901926 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7271925 The Effects of Adding External Mass and Localised Fatigue upon Static and Dynamic Balance
Authors: K. Abuzayan, H. Alabed, S. Ali
Abstract:
The influence of physical (external added weight) and neurophysiological (fatigue) factors on static and dynamic balance in sport related activities was typified statically by the Romberg test (one foot flat, eyes open) and dynamically by jumping and hopping in both horizontal and vertical directions. Twenty healthy males were participated in this study. In Static condition, added weight increased body-s inertia and therefore decreased body sway in AP direction though not significantly. Dynamically, added weight significantly increased body sway in both ML and AP directions, indicating instability, and the use of the counter rotating segments mechanism to maintain balance was demonstrated. Fatigue on the other hand significantly increased body sway during static balance as a neurophysiological adaptation primarily to the inverted pendulum mechanism. Dynamically, fatigue significantly increased body sway in both ML and AP directions again indicating instability but with a greater use of counter rotating segments mechanism. Differential adaptations for each of the two balance mechanisms (inverted pendulum and counter rotating segments) were found between one foot flat and two feet flat dynamic conditions, as participants relied more heavily on the first in the one foot flat conditions and relied more on the second in the two feet flat conditions.Keywords: Adding external mass, Dynamic balance, Localised fatigue, Static balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17291924 An Agent Based Simulation for Network Formation with Heterogeneous Agents
Authors: Hisashi Kojima, Masatora Daito
Abstract:
We investigate an asymmetric connections model with a dynamic network formation process, using an agent based simulation. We permit heterogeneity of agents- value. Valuable persons seem to have many links on real social networks. We focus on this point of view, and examine whether valuable agents change the structures of the terminal networks. Simulation reveals that valuable agents diversify the terminal networks. We can not find evidence that valuable agents increase the possibility that star networks survive the dynamic process. We find that valuable agents disperse the degrees of agents in each terminal network on an average.Keywords: network formation, agent based simulation, connections model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12881923 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System
Authors: Dana M. Ragab, Jasim A. Ghaeb
Abstract:
The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.
Keywords: Three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9971922 Analysing and Classifying VLF Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.
Keywords: Transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811921 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks
Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine
Abstract:
This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26461920 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.
Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631919 Using Technology with a New Model of Management Development by Simulation of Neural Network and its Application on Intelligent Schools
Authors: Ahmad Ghayoumi, Mehdi Ghayoumi
Abstract:
Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand management improvement is best described as the process from which managers learn and improve their skills not only to benefit themselves but also their employing organizations Here, we present a model Management improvement System that has been applied on some schools and have made strict improvement.Keywords: Intelligent school, Management development system, Learning station, Teaching station
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10961918 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13411917 Collaborative Mobile Device based Data Collection and Dissemination using MIH for Effective Emergency Management
Authors: Aiswaria Ramachandran, Balaji Haiharan
Abstract:
The importance of our country-s communication system is noticeable when a disaster occurs. The communication system in our country includes wired and wireless telephone networks, radio, satellite system and more increasingly internet. Even though our communication system is most extensive and dependable, extreme conditions can put a strain on them. Interoperability between heterogeneous wireless networks can be used to provide efficient communication for emergency first response. IEEE 802.21 specifies Media Independent Handover (MIH) services to enhance the mobile user experience by optimizing handovers between heterogeneous access networks. This paper presents an algorithm to improve congestion control in MIH framework. It is analytically shown that by including time factor in network selection we can optimize congestion in the network.Keywords: Vertical Handoff, Heterogeneous Networks, MIH
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491916 Anisotropic Constitutive Model and its Application in Simulation of Thermal Shock Wave Propagation for Cylinder Shell Composite
Authors: Xia Huang, Wenhui Tang, Banghai Jiang, Xianwen Ran
Abstract:
In this paper, a plane-strain orthotropic elasto-plastic dynamic constitutive model is established, and with this constitutive model, the thermal shock wave induced by intense pulsed X-ray radiation in cylinder shell composite is simulated by the finite element code, then the properties of thermal shock wave propagation are discussed. The results show that the thermal shock wave exhibit different shapes under the radiation of soft and hard X-ray, and while the composite is radiated along different principal axes, great differences exist in some aspects, such as attenuation of the peak stress value, spallation and so on.Keywords: anisotropic constitutive model, thermal shock wave, X-ray, cylinder shell composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631915 Optimization of Bit Error Rate and Power of Ad-hoc Networks Using Genetic Algorithm
Authors: Anjana Choudhary
Abstract:
The ad hoc networks are the future of wireless technology as everyone wants fast and accurate error free information so keeping this in mind Bit Error Rate (BER) and power is optimized in this research paper by using the Genetic Algorithm (GA). The digital modulation techniques used for this paper are Binary Phase Shift Keying (BPSK), M-ary Phase Shift Keying (M-ary PSK), and Quadrature Amplitude Modulation (QAM). This work is implemented on Wireless Ad Hoc Networks (WLAN). Then it is analyze which modulation technique is performing well to optimize the BER and power of WLAN.
Keywords: Bit Error Rate, Genetic Algorithm, Power, Phase Shift Keying, Quadrature Amplitude Modulation, Signal to Noise Ratio, Wireless Ad Hoc Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31181914 Secure Data Aggregation Using Clusters in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.Keywords: Aggregation, Clustering, Query Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351913 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.
Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8621912 Use Cases Analysis of Free Space Optical Communication System
Authors: K. Saab, F. Bart, Y.-M. Seveque
Abstract:
The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.
Keywords: End-to-end optical communication, laser propagation, optical ground station, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461911 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: Video tracking, particle filter, greedy snake, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11931910 MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks
Authors: Kavi K. Khedo, R. K. Subramanian
Abstract:
Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.Keywords: Clustering algorithm, energy consumption, hierarchical model, sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821909 Face Recognition: A Literature Review
Authors: A. S. Tolba, A.H. El-Baz, A.A. El-Harby
Abstract:
The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results.Keywords: Combined classifiers, face recognition, graph matching, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77311908 Natural Emergence of a Core Structure in Networks via Clique Percolation
Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun
Abstract:
Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.Keywords: Networks, cliques, percolation, core structure, phase transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765