Search results for: unbalanced radial distributionsystem
280 Acceleration Analysis of a Rotating Body
Authors: R. Usubamatov
Abstract:
The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.
Keywords: acceleration analysis, kinematics of mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695279 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051278 Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid
Authors: Zeinab Galavani, Reza Rezaei-Nasirabad, Rasoul Sadighi-Bonabi
Abstract:
Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion.Keywords: Bjerknes force, History force, Reynolds number, Sonoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543277 Unreliable Production Lines with Simultaneously Unbalanced Operation Time Means, Breakdown, and Repair Rates
Authors: S. Shaaban, T. McNamara, S. Hudson
Abstract:
This paper investigates the benefits of deliberately unbalancing both operation time means (MTs) and unreliability (failure and repair rates) for non-automated production lines. The lines were simulated with various line lengths, buffer capacities, degrees of imbalance and patterns of MT and unreliability imbalance. Data on two performance measures, namely throughput (TR) and average buffer level (ABL) were gathered, analyzed and compared to a balanced line counterpart. A number of conclusions were made with respect to the ranking of configurations, as well as to the relationships among the independent design parameters and the dependent variables. It was found that the best configurations are a balanced line arrangement and a monotone decreasing MT order, coupled with either a decreasing or a bowl unreliability configuration, with the first generally resulting in a reduced TR and the second leading to a lower ABL than those of a balanced line.Keywords: Average buffer level, throughput, unbalanced failure and repair rates, unequal mean operation times, unreliable production lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241276 Software Effort Estimation Models Using Radial Basis Function Network
Authors: E. Praynlin, P. Latha
Abstract:
Software Effort Estimation is the process of estimating the effort required to develop software. By estimating the effort, the cost and schedule required to estimate the software can be determined. Accurate Estimate helps the developer to allocate the resource accordingly in order to avoid cost overrun and schedule overrun. Several methods are available in order to estimate the effort among which soft computing based method plays a prominent role. Software cost estimation deals with lot of uncertainty among all soft computing methods neural network is good in handling uncertainty. In this paper Radial Basis Function Network is compared with the back propagation network and the results are validated using six data sets and it is found that RBFN is best suitable to estimate the effort. The Results are validated using two tests the error test and the statistical test.
Keywords: Software cost estimation, Radial Basis Function Network (RBFN), Back propagation function network, Mean Magnitude of Relative Error (MMRE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387275 A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning
Authors: A. R. Seifi
Abstract:
This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.
Keywords: Capacitor planning, Fuzzy logic method, Genetic Algorithm, Dynamic programming, Radial Distribution feeder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610274 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method
Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or
Abstract:
This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692273 Computational Simulation of Imploding Current Sheath Trajectory at the Radial Phase of Plasma Focus Performance
Authors: R. Amrollahi, M. Habibi
Abstract:
When the shock front (SF) hits the central electrode axis of plasma focus device, a reflected shock wave moves radially outwards. The current sheath (CS) results from ionization of filled gas between two electrodes continues to compress inwards until it hits the out-going reflected shock front. In this paper the Lagrangian equations are solved for a parabolic shock trajectory yielding a first and second approximation for the CS path. To determine the accuracy of the approximation, the same problem is solved for a straight shock.Keywords: Radial compression, Shock wave trajectory, Current sheath, Slog model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245272 The Analysis of Radial/Axial Error Motion on a Precision Rotation Stage
Authors: Jinho Kim, Dongik Shin, Deokwon Yun, Changsoo Han
Abstract:
Rotating stages in semiconductor, display industry and many other fields require challenging accuracy to perform their functions properly. Especially, Axis of rotation error on rotary system is significant; such as the spindle error motion of the aligner, wire bonder and inspector machine which result in the poor state of manufactured goods. To evaluate and improve the performance of such precision rotary stage, unessential movements on the other 5 degrees of freedom of the rotary stage must be measured and analyzed. In this paper, we have measured the three translations and two tilt motions of a rotating stage with high precision capacitive sensors. To obtain the radial error motion from T.I.R (Total Indicated Reading) of radial direction, we have used Donaldson's reversal technique. And the axial components of the spindle tilt error motion can be obtained accurately from the axial direction outputs of sensors by Estler face motion reversal technique. Further more we have defined and measured the sensitivity of positioning error to the five error motions.Keywords: Donaldson's reversal methods, Estler face motionreversal method, Error motion, sensitivity, T.I.R (Total IndicatedReading).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542271 Optimal Capacitor Placement in a Radial Distribution System using Plant Growth Simulation Algorithm
Authors: R. Srinivasa Rao, S. V. L. Narasimham
Abstract:
This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9, 34, and 85-bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.
Keywords: Distribution systems, Capacitor placement, loss reduction, Loss sensitivity factors, PGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5282270 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143269 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117268 Interfacing Photovoltaic Systems to the Utility Grid: A Comparative Simulation Study to Mitigate the Impact of Unbalanced Voltage Dips
Authors: Badr M. Alshammari, A. Rabeh, A. K. Mohamed
Abstract:
This paper presents the modeling and the control of a grid-connected photovoltaic system (PVS). Firstly, the MPPT control of the PVS and its associated DC/DC converter has been analyzed in order to extract the maximum of available power. Secondly, the control system of the grid side converter (GSC) which is a three-phase voltage source inverter (VSI) has been presented. A special attention has been paid to the control algorithms of the GSC converter during grid voltages imbalances. Especially, three different control objectives are to achieve; the mitigation of the grid imbalance adverse effects, at the point of common coupling (PCC), on the injected currents, the elimination of double frequency oscillations in active power flow, and the elimination of double frequency oscillations in reactive power flow. Simulation results of two control strategies have been performed via MATLAB software in order to demonstrate the particularities of each control strategy according to power quality standards.
Keywords: Renewable energies, photovoltaic systems, DC link, voltage source inverter, space vector SVPWM, unbalanced voltage dips, symmetrical components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625267 A Novel Design in the Use of Planar Transformers for LDMOS Based Amplifiers in Bands II, III, DRM+, DVB-T and DAB+
Authors: Antonis Constantinides, Christos Yiallouras
Abstract:
The coaxial transformer-coupled push-pull circuitry has been used widely in HF and VHF amplifiers for many decades without significant changes in the topology of the transformers. Basic changes over the years concerned the construction and turns ratio of the transformers as has been imposed upon the newer technologies active devices demands. The balun transmission line transformers applied in push-pull amplifiers enable input/output impedance transformation, but are mainly used to convert the balanced output into unbalanced and the input unbalanced into balanced. A simple and affordable alternative solution over the traditional coaxial transformer is the coreless planar balun. A key advantage over the traditional approach lies in the high specifications repeatability; simplifying the amplifier construction requirements as the planar balun constitutes an integrated part of the PCB copper layout. This paper presents the performance analysis of a planar LDMOS MRFE6VP5600 Push-Pull amplifier that enables robust operation in Band III, DVB-T, DVB-T2 standards but functions equally well in Band II, for DRM+ new generation transmitters.Keywords: Amplifier, balun, complex impedance, LDMOS, planar-transformers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3381266 High Impedance Fault Detection using LVQ Neural Networks
Authors: Abhishek Bansal, G. N. Pillai
Abstract:
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214265 Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter
Authors: Dipen A. Mistry, Bhupelly Dheeraj, Ravit Gautam, Manmohan Singh Meena, Suresh Mikkili
Abstract:
In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.
Keywords: DC link voltage, Fuzzy logic controller, Harmonics, PI controller, Shunt Active Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162264 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions
Authors: D. Kriebel, J. E. Mehner
Abstract:
The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.
Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517263 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746262 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates
Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla
Abstract:
The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126261 Stability Analysis of Single Inverter Fed Two Induction Motors in Parallel
Authors: R. Gunabalan, V. Subbiah
Abstract:
This paper discusses the novel graphical approach for stability analysis of multi induction motor drive controlled by a single inverter. Stability issue arises in parallel connected induction motors under unbalanced load conditions. The two powerful globally accepted modeling and simulation software packages such as MATLAB and LabVIEW are selected to perform the stability analysis. The stability investigation is performed for different load conditions and difference in stator and rotor resistances among the two motors. It is very simple and effective than the techniques presented to obtain the stability of the parallel connected induction motor drive under unbalanced load conditions. Approximate transfer functions are considered to model the induction motors, load dynamics, speed controllers and inverter. Simulink library tools are utilized to model the entire drive scheme in MATLAB. Stability study is discussed in LabVIEW using control design and simulation toolkits. Simulation results are illustrated for various running conditions to demonstrate the effectiveness of the transfer function method.
Keywords: Induction motor, Modeling, Stability analysis, Transfer function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687260 Role of Acoustic Pressure on the Dynamics of Moving Single-Bubble Sonoluminescence
Authors: Reza Rezaei-Nasirabad, Zeinab Galavani, Rasoul Sadighi-Bonabi, Mohammad Asgarian
Abstract:
Role of acoustic driving pressure on the translational-radial dynamics of a moving single bubble sonoluminescence (m-SBSL) has been numerically investigated. The results indicate that increase in the amplitude of the driving pressure leads to increase in the bubble peak temperature. The length and the shape of the trajectory of the bubble depends on the acoustic pressure and because of the spatially dependence of the radial dynamics of the moving bubble, its peak temperature varies during the acoustical pulses. The results are in good agreement with the experimental reports on m-SBSL.Keywords: Bubble dynamics, Equation of the gas state, Hydrodynamic force, Moving sonoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785259 The Empirical Survey on the Effect of Using Media in Explosive Forming of Tubular Shells
Authors: V. Hadavi, J. Zamani, R. Hosseini
Abstract:
The special and unique advantages of explosive forming, has developed its use in different industries. Considering the important influence of improving the current explosive forming techniques on increasing the efficiency and control over the explosive forming procedure, the effects of air and water as the energy-conveying medium, and also their differences will be illustrated in this paper. Hence, a large number of explosive forming tests have been conducted on two sizes of thin walled cylindrical shells by using air and water as the working medium. Comparative diagrams of the maximum radial deflection of work-pieces of the same size, as a function of the scaled distance, show that for the points with the same values of scaled distance, the maximum radial deformation caused by the under water explosive loading is 4 to 5 times more than the deflection of the shells under explosive forming, while using air. Results of this experimental research have also been compared with other studies which show that using water as the energy conveying media increases the efficiency up to 4.8 times. The effect of the media on failure modes of the shells, and the necking mechanism of the walls of the specimens, while being explosively loaded, are also discussed in this issue. Measuring the tested specimens shows that, the increase in the internal volume has been accompanied by necking of the walls, which finally results in the radial rupture of the structure.Keywords: Explosive Forming, Energy Conveying Medium, Tubular Shell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348258 Chilean Wines Classification based only on Aroma Information
Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos
Abstract:
Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547257 Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor
Authors: K. Vakhshouri, M.M. Y. Motamed Hashemi
Abstract:
A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. Due to severe operating conditions, in all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer.
Keywords: Steam reforming, direct reduction, heat transfer, two-dimensional model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3644256 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).
Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346255 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850254 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder
Authors: A. Amiri Delouei
Abstract:
In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.
Keywords: Functionally graded materials, unsteady heat conduction, cylinder, Temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205253 An Efficient Method for Load−Flow Solution of Radial Distribution Networks
Authors: Smarajit Ghosh , Karma Sonam Sherpa
Abstract:
This paper reports a new and accurate method for load-flow solution of radial distribution networks with minimum data preparation. The node and branch numbering need not to be sequential like other available methods. The proposed method does not need sending-node, receiving-node and branch numbers if these are sequential. The proposed method uses the simple equation to compute the voltage magnitude and has the capability to handle composite load modelling. The proposed method uses the set of nodes of feeder, lateral(s) and sub lateral(s). The effectiveness of the proposed method is compared with other methods using two examples. The detailed load-flow results for different kind of load-modellings are also presented.
Keywords: Load−flow, Feeder, Lateral, Power, Voltage, Composite, Exponential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5707252 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115251 RBF Based Face Recognition and Expression Analysis
Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar
Abstract:
Facial recognition and expression analysis is rapidly becoming an area of intense interest in computer science and humancomputer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper skin and non-skin pixels were separated. Face regions were extracted from the detected skin regions. Facial expressions are analyzed from facial images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to identify the person and to classify the facial expressions. Our method reliably works even with faces, which carry heavy expressions.Keywords: Face Recognition, Radial Basis Function, Gabor Wavelet Transform, Discrete Cosine Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595