Search results for: multivariate logistic link
668 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807667 PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts
Authors: Rania A. Abul Seoud, Nahed H. Solouma, Abou-Baker M. Youssef, Yasser M. Kadah
Abstract:
Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.Keywords: Link Grammar Parser, Interaction extraction, protein-protein interaction, Natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254666 Optimal Measures in Production Developing an Universal Decision Supporter for Evaluating Measures in a Production
Authors: Michael Grigutsch, Marco Kennemann, Peter Nyhuis
Abstract:
Due to the recovering global economy, enterprises are increasingly focusing on logistics. Investing in logistic measures for a production generates a large potential for achieving a good starting point within a competitive field. Unlike during the global economic crisis, enterprises are now challenged with investing available capital to maximize profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need an adequate model for logistically and monetarily evaluating measures in production. The Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems (IFA) developed a Logistic Information System which provides support in making decisions and is designed specifically for the forging industry. The aim of a project that has been applied for is to now transfer this process in order to develop a universal approach to logistically and monetarily evaluate measures in production.Keywords: Measures in Production, Logistic Operating Curves, Transfer Functions, Production Logistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489665 Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator
Authors: M. Pala Prasad Reddy, Jeevamma Jacob
Abstract:
Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.
Keywords: Flexible link manipulator, AMM, FEM, LS-DYNA, Bang-bang torque input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915664 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.
Keywords: Correlation coefficients, displacement effect, gender difference, multivariate analysis technique, regression coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170663 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns
Authors: Hyun-Woo Cho
Abstract:
The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604662 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network
Authors: M. Jayekumar, V. Nagarajan
Abstract:
Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.
Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192661 Usage-based Traffic Control for P2P Content Delivery
Authors: Megumi Shibuya, Tomohiko Ogishi
Abstract:
Recently, content delivery services have grown rapidly over the Internet. For ASPs (Application Service Provider) providing content delivery services, P2P architecture is beneficial to reduce outgoing traffic from content servers. On the other hand, ISPs are suffering from the increase in P2P traffic. The P2P traffic is unnecessarily redundant because the same content or the same fractions of content are transferred through an inter-ISP link several times. Subscriber ISPs have to pay a transit fee to upstream ISPs based on the volume of inter-ISP traffic. In order to solve such problems, several works have been done for the purpose of P2P traffic reduction. However, these existing works cannot control the traffic volume of a certain link. In order to solve such an ISP-s operational requirement, we propose a method to control traffic volume for a link within a preconfigured upper bound value. We evaluated that the proposed method works well by conducting a simulation on a 1,000-user scale. We confirm that the traffic volume could be controlled at a lower level than the upper bound for all evaluated conditions. Moreover, our method could control the traffic volume at 98.95% link usage against the target value.Keywords: P2P, traffic control, traffic localization, ALTO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564660 Physico-Chemical Environment of Coastal Areas in the Vicinity of Lbod And Tidal Link Drain in Sindh, Pakistan after Cyclone 2a
Authors: Salam Khalid Al-Agha, Inamullah Bhatti, Hossam Adel Zaqoot, Shaukat Hayat Khan, Abdul Khalique Ansari
Abstract:
This paper presents the results of preliminary assessment of water quality along the coastal areas in the vicinity of Left Bank Outfall Drainage (LBOD) and Tidal Link Drain (TLD) in Sindh province after the cyclone 2A occurred in 1999. The water samples were collected from various RDs of Tidal Link Drain and lakes during September 2001 to April 2002 and were analysed for salinity, nitrite, phosphate, ammonia, silicate and suspended material in water. The results of the study showed considerable variations in water quality depending upon the location along the coast in the vicinity of LBOD and RDs. The salinity ranged between 4.39–65.25 ppt in Tidal Link Drain samples whereas 2.4–38.05 ppt in samples collected from lakes. The values of suspended material at various RDs of Tidal Link Drain ranged between 56.6–2134 ppm and at the lakes between 68–297 ppm. The data of continuous monitoring at RD–93 showed the range of PO4 (8.6–25.2 μg/l), SiO3 (554.96–1462 μg/l), NO2 (0.557.2–25.2 μg/l) and NH3 (9.38–23.62 μg/l). The concentration of nutrients in water samples collected from different RDs was found in the range of PO4 (10.85 to 11.47 μg/l), SiO3 (1624 to 2635.08 μg/l), NO2 (20.38 to 44.8 μg/l) and NH3 (24.08 to 26.6 μg/l). Sindh coastal areas which situated at the north-western boundary the Arabian Sea are highly vulnerable to flood damages due to flash floods during SW monsoon or impact of sea level rise and storm surges coupled with cyclones passing through Arabian Sea along Pakistan coast. It is hoped that the obtained data in this study would act as a database for future investigations and monitoring of LBOD and Tidal Link Drain coastal waters.Keywords: Tidal Link Drain, Salinity, Nutrients, Nitrite salts, Coastal areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236659 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents
Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil
Abstract:
In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490658 SDVAR Algorithm for Detecting Fraud in Telecommunications
Authors: Fatimah Almah Saaid, Darfiana Nur, Robert King
Abstract:
This paper presents a procedure for estimating VAR using Sequential Discounting VAR (SDVAR) algorithm for online model learning to detect fraudulent acts using the telecommunications call detailed records (CDR). The volatility of the VAR is observed allowing for non-linearity, outliers and change points based on the works of [1]. This paper extends their procedure from univariate to multivariate time series. A simulation and a case study for detecting telecommunications fraud using CDR illustrate the use of the algorithm in the bivariate setting.Keywords: Telecommunications Fraud, SDVAR Algorithm, Multivariate time series, Vector Autoregressive, Change points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256657 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method
Authors: Abolfazl Mohammadijoo
Abstract:
In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.
Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500656 Modified Functional Link Artificial Neural Network
Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot
Abstract:
In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.Keywords: DLFANN, FLANN, M-FLANN, MLP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803655 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121654 Information Fusion for Identity Verification
Authors: Girija Chetty, Monica Singh
Abstract:
In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..
Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779653 Optimal Controller with Backstepping and BELBIC for Single-Link Flexible Manipulator
Authors: Ali Reza Sahab, Amir Gholami Pastaki
Abstract:
In this paper, backstepping method (BM) is proposed for a single-link flexible mechanical manipulator. In each step of this method a positive value is obtained. Selections of the gain factor values are very important because controller will have different behavior for each different set of values. Improper selection of these gains can lead to instability of the system. In order to choose proper values for gains BELBIC method has been used in this work. Finally, to prove the efficiency of this method, the obtained results of proposed model are compared with robust controller one. Results show that the combination of backstepping and BELBIC that is presented here, can stabilized the system with higher speed, shorter settling time and lower overshoot in than robust controller.
Keywords: single-link flexible manipulator, backstepping, BELBIC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875652 The Technological Problem of Simulation of the Logistics Center
Authors: Juraj Camaj, Anna Dolinayova, Jana Lalinska, Miroslav Bariak
Abstract:
Planning of infrastructure and processes in logistic center within the frame of various kinds of logistic hubs and technological activities in them represent quite complex problem. The main goal is to design appropriate layout, which enables to realize expected operation on the desired levels. The simulation software represents progressive contemporary experimental technique, which can support complex processes of infrastructure planning and all of activities on it. It means that simulation experiments, reflecting various planned infrastructure variants, investigate and verify their eligibilities in relation with corresponding expected operation. The inducted approach enables to make qualified decisions about infrastructure investments or measures, which derive benefit from simulation-based verifications. The paper represents simulation software for simulation infrastructural layout and technological activities in marshalling yard, intermodal terminal, warehouse and combination between them as the parts of logistic center.
Keywords: Marshalling yard, intermodal terminal, warehouse, transport technology, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528651 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration
Authors: Randhir Singh Baghel
Abstract:
In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.
Keywords: Machine Learning, deep learning, Neural Network, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165650 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics
Authors: S. Aouabdi, M. Taibi
Abstract:
This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).Keywords: Ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivariate statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148649 Delivery System Design of the Local Part to Reduce the Logistic Costs in an Automotive Industry
Authors: Inaki Maulida Hakim, Alesandro Romero
Abstract:
This research was conducted in an automotive company in Indonesia to overcome the problem of high logistics cost. The problem causes high of additional truck delivery. From the breakdown of the problem, chosen one route, which has the highest gap value, namely for RE-04. Research methodology will be started from calculating the ideal condition, making simulation, calculating the ideal logistic cost, and proposing an improvement. From the calculation of the ideal condition, box arrangement was done on the truck has efficiency with three trucks delivery per day. Route simulation making uses Tecnomatix Plant Simulation software as a visualization for the company about how the system is occurred on route RE-04 in ideal condition. The last step is proposing improvements on the area of route RE-04. The route arrangement is done by Saving Method and sequence of each supplier with the Nearest Neighbor. The results of the proposed improvements are three new route groups, where was expected to decrease logistics cost and increase the average of the truck efficiency per day.
Keywords: Logistic cost, milkrun, simulation, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755648 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District
Authors: Panpan Xu, Qiying Zhang, Hui Qian
Abstract:
Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.
Keywords: Irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568647 Investigating Transformations in the Cartesian Plane Using Spreadsheets
Authors: D. Allison, A. Didenko, G. Miller
Abstract:
The link between coordinate transformations in the plane and their effects on the graph of a function can be difficult for students studying college level mathematics to comprehend. To solidify this conceptual link in the mind of a student Microsoft Excel can serve as a convenient graphing tool and pedagogical aid. The authors of this paper describe how various transformations and their related functional symmetry properties can be graphically displayed with an Excel spreadsheet.
Keywords: Mathematics education, Microsoft Excel spreadsheet, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988646 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849645 Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace
Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai
Abstract:
In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.Keywords: 2-link revolute manipulator, motion control, obstacle avoidance, asymptotic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851644 Investigating Determinants of Medical User Expectations from Hospital Information System
Authors: G. Gürsel, K. H. Gülkesen, N. Zayim, A. Arifoğlu, O. Saka
Abstract:
User satisfaction is one of the most used success indicators in the research of information system (IS). Literature shows user expectations have great influence on user satisfaction. Both expectation and satisfaction of users are important for Hospital Information Systems (HIS). Education, IS experience, age, attitude towards change, business title, sex and working unit of the hospital, are examined as the potential determinant of the medical users’ expectations. Data about medical user expectations are collected by the “Expectation Questionnaire” developed for this study. Expectation data are used for calculating the Expectation Meeting Ratio (EMR) with the evaluation framework also developed for this study. The internal consistencies of the answers to the questionnaire are measured by Cronbach´s Alpha coefficient. The multivariate analysis of medical user’s EMRs of HIS is performed by forward stepwise binary logistic regression analysis. Education and business title is appeared to be the determinants of expectations from HIS.Keywords: Evaluation, Fuzzy Logic, Hospital Information System, User Expectation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946643 Cost Sensitive Analysis of Production Logistics Measures A Decision Making Support System for Evaluating Measures in the Production
Authors: Michael Grigutsch, Peter Nyhuis
Abstract:
Due to the volatile global economy, enterprises are increasingly focusing on logistics. By investing in suitable measures a company can increase their logistic performance and assert themselves over the competition. However, enterprises are also faced with the challenge of investing available capital for maximum profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need a suitable model for logistically and monetarily evaluating measures in production. Previously, within the frame of Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems and Logistics, (IFA) a Logistic Information System was developed specifically for providing enterprises in the forging industry with support when making decisions. Based on this research, a new initiative referred to as ‘Transfer Project T7’, aims to develop a universal approach for logistically and monetarily evaluating production measures. This paper focuses on the structural measure echelon storage and their impact on the entire production system.
Keywords: Logistic Operating Curves, Transfer Functions, Production Logistics, Storages Echelon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332642 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668641 The Effects of Subjective and Objective Indicators of Inequality on Life Satisfaction in a Comparative Perspective Using a Multi-Level Analysis
Authors: Atefeh Bagherianziarat, Dana Hamplova
Abstract:
The inverse social gradient in life satisfaction (LS) is a well-established research finding. Although objective aspects of inequality or individuals’ socioeconomic status are among the approved predictors of life satisfaction; however, less is known about the effect of subjective inequality and the interplay of these two aspects of inequality on life satisfaction. It is suggested that individuals’ perception of their socioeconomic status in society can moderate the link between their absolute socioeconomic status and life satisfaction. Nevertheless, this moderating link has not been affirmed to work likewise in societies with different welfare regimes associating with different levels of social inequality. In this study, we compared the moderative influence of subjective inequality on the link between objective inequality and LS. In particular, we focus on differences across welfare state regimes based on Esping-Andersen's theory. Also, we explored the moderative role of believing in the value of equality on the link between objective and subjective inequality on LS, in the given societies. Since our studied variables were measured at both individual and country levels, we applied a multilevel analysis to the European Social Survey data (round 9). The results showed that people in different regimes reported statistically meaningful different levels of LS that is explained to different extends by their household income and their perception of their income inequality. The findings of the study supported the previous findings of the moderator influence of perceived inequality on the link between objective inequality and LS. However, this link is different in various welfare state regimes. The results of the multilevel modeling showed that country-level subjective equality is a positive predictor for individuals’ LS, while the Gini coefficient that was considered as the indicator of absolute inequality has a smaller effect on LS. Also, country-level subjective equality moderates the confirmed link between individuals’ income and their LS. It can be concluded that both individual and country-level subjective inequality slightly moderate the effect of individuals’ income on their LS.
Keywords: individual values, life satisfaction, multi-level analysis, objective inequality, subjective inequality, welfare regimes status
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711640 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –
Authors: Reinhold Decker, Christian Holsing, Sascha Lerke
Abstract:
This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200639 Average Switching Thresholds and Average Throughput for Adaptive Modulation using Markov Model
Authors: Essam S. Altubaishi
Abstract:
The motivation for adaptive modulation and coding is to adjust the method of transmission to ensure that the maximum efficiency is achieved over the link at all times. The receiver estimates the channel quality and reports it back to the transmitter. The transmitter then maps the reported quality into a link mode. This mapping however, is not a one-to-one mapping. In this paper we investigate a method for selecting the proper modulation scheme. This method can dynamically adapt the mapping of the Signal-to- Noise Ratio (SNR) into a link mode. It enables the use of the right modulation scheme irrespective of changes in the channel conditions by incorporating errors in the received data. We propose a Markov model for this method, and use it to derive the average switching thresholds and the average throughput. We show that the average throughput of this method outperforms the conventional threshold method.Keywords: Adaptive modulation and coding, CDMA, Markov model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729