Search results for: Unconstrained vector quantization
751 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.
Keywords: Image fusion, iris recognition, local binary pattern, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217750 On Finite Wordlength Properties of Block-Floating-Point Arithmetic
Authors: Abhijit Mitra
Abstract:
A special case of floating point data representation is block floating point format where a block of operands are forced to have a joint exponent term. This paper deals with the finite wordlength properties of this data format. The theoretical errors associated with the error model for block floating point quantization process is investigated with the help of error distribution functions. A fast and easy approximation formula for calculating signal-to-noise ratio in quantization to block floating point format is derived. This representation is found to be a useful compromise between fixed point and floating point format due to its acceptable numerical error properties over a wide dynamic range.Keywords: Block floating point, Roundoff error, Block exponent dis-tribution fuction, Signal factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014749 A Formulation of the Latent Class Vector Model for Pairwise Data
Authors: Tomoya Okubo, Kuninori Nakamura, Shin-ichi Mayekawa
Abstract:
In this research, a latent class vector model for pairwise data is formulated. As compared to the basic vector model, this model yields consistent estimates of the parameters since the number of parameters to be estimated does not increase with the number of subjects. The result of the analysis reveals that the model was stable and could classify each subject to the latent classes representing the typical scales used by these subjects.
Keywords: finite mixture models, latent class analysis, Thrustone's paired comparison method, vector model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216748 User Guidance for Effective Query Interpretation in Natural Language Interfaces to Ontologies
Authors: Aliyu Isah Agaie, Masrah Azrifah Azmi Murad, Nurfadhlina Mohd Sharef, Aida Mustapha
Abstract:
Natural Language Interfaces typically support a restricted language and also have scopes and limitations that naïve users are unaware of, resulting in errors when the users attempt to retrieve information from ontologies. To overcome this challenge, an auto-suggest feature is introduced into the querying process where users are guided through the querying process using interactive query construction system. Guiding users to formulate their queries, while providing them with an unconstrained (or almost unconstrained) way to query the ontology results in better interpretation of the query and ultimately lead to an effective search. The approach described in this paper is unobtrusive and subtly guides the users, so that they have a choice of either selecting from the suggestion list or typing in full. The user is not coerced into accepting system suggestions and can express himself using fragments or full sentences.
Keywords: Auto-suggest, expressiveness, habitability, natural language interface, query interpretation, user guidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474747 3D Model Retrieval based on Normal Vector Interpolation Method
Authors: Ami Kim, Oubong Gwun, Juwhan Song
Abstract:
In this paper, we proposed the distribution of mesh normal vector direction as a feature descriptor of a 3D model. A normal vector shows the entire shape of a model well. The distribution of normal vectors was sampled in proportion to each polygon's area so that the information on the surface with less surface area may be less reflected on composing a feature descriptor in order to enhance retrieval performance. At the analysis result of ANMRR, the enhancement of approx. 12.4%~34.7% compared to the existing method has also been indicated.Keywords: Interpolated Normal Vector, Feature Descriptor, 3DModel Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474746 A Perceptual Image Coding method of High Compression Rate
Authors: Fahmi Kammoun, Mohamed Salim Bouhlel
Abstract:
In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.Keywords: Contrast Sensitivity Function, Human Visual System, Image compression, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874745 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing
Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta
Abstract:
Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424744 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System
Authors: J. S. Kim
Abstract:
This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².
Keywords: CMOS, vector modulator, beamforming, wireless backhaul, ISM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056743 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood
Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid
Abstract:
Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.
Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518742 Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization
Authors: Kheldoun Aissa, Khodja Djalal Eddine
Abstract:
The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.Keywords: Field Oriented Controller, Induction Motor, Loss ModelController, Series Iron Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702741 Simplified Space Vector Based Decoupled Switching Strategy for Indirect Vector Controlled Open-End Winding Induction Motor Drive
Authors: Syed Munvar Ali, V. Vijaya Kumar Reddy, M. Surya Kalavathi
Abstract:
In this paper, a dual inverter configuration has been implemented for induction motor drive. This isolated dual inverter is capable to produce high quality of output voltage and minimize common mode voltage (CMV). To this isolated dual inverter a decoupled space vector based pulse width modulation (PWM) technique is proposed. Conventional space vector based PWM (SVPWM) techniques require reference voltage vector calculation and sector identification. The proposed decoupled SVPWM technique generates gating pulses from instantaneous phase voltages and gives a CMV of ±vdc/6. To evaluate proposed algorithm MATLAB based simulation studies are carried on indirect vector controlled open end winding induction motor drive.Keywords: Inverter configuration, decoupled SVPWM, common mode voltage, vector control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733740 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591739 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives
Authors: Roozbeh Molavi, Davood A. Khaburi
Abstract:
The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009738 Contourlet versus Wavelet Transform for a Robust Digital Image Watermarking Technique
Authors: Ibrahim A. El rube, Mohamad Abou El Nasr , Mostafa M. Naim, Mahmoud Farouk
Abstract:
In this paper, a watermarking algorithm that uses the wavelet transform with Multiple Description Coding (MDC) and Quantization Index Modulation (QIM) concepts is introduced. Also, the paper investigates the role of Contourlet Transform (CT) versus Wavelet Transform (WT) in providing robust image watermarking. Two measures are utilized in the comparison between the waveletbased and the contourlet-based methods; Peak Signal to Noise Ratio (PSNR) and Normalized Cross-Correlation (NCC). Experimental results reveal that the introduced algorithm is robust against different attacks and has good results compared to the contourlet-based algorithm.
Keywords: image watermarking; discrete wavelet transform, discrete contourlet transform, multiple description coding, quantization index modulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067737 A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression
Authors: Kamrul Hasan Talukder, Koichi Harada
Abstract:
The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.
Keywords: Computation Tree Logic, Discrete WaveletTransform, Formal Verification, Image Compression, Symbolic Model Verifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749736 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995735 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401734 Volume Density of Power of Multivector Electric Machine
Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev
Abstract:
Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.
Keywords: Electric machine, electric motor, electromagnet, efficiency of electric motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037733 Performance of Total Vector Error of an Estimated Phasor within Local Area Networks
Authors: Ahmed Abdolkhalig, Rastko Zivanovic
Abstract:
This paper evaluates the Total Vector Error of an estimated Phasor as define in IEEE C37.118 standard within different medium access in Local Area Networks (LAN). Three different LAN models (CSMA/CD, CSMA/AMP and Switched Ethernet) are evaluated. The Total Vector Error of the estimated Phasor has been evaluated for the effect of Nodes Number under the standardized network Band-width values defined in IEC 61850-9-2 communication standard (i.e. 0.1, 1 and 10 Gbps).
Keywords: Phasor, Local Area Network, Total Vector Error, IEEE C37.118, IEC 61850.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4147732 Alertness States Classification By SOM and LVQ Neural Networks
Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre
Abstract:
Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476731 Implementation of SU-MIMO and MU-MIMOGTD-System under Imperfect CSI Knowledge
Authors: Parit Kanjanavirojkul, Kiatwarakorn Keeratishananond, Prapun Suksompong
Abstract:
We study the performance of compressed beamforming weights feedback technique in generalized triangular decomposition (GTD) based MIMO system. GTD is a beamforming technique that enjoys QoS flexibility. The technique, however, will perform at its optimum only when the full knowledge of channel state information (CSI) is available at the transmitter. This would be impossible in the real system, where there are channel estimation error and limited feedback. We suggest a way to implement the quantized beamforming weights feedback, which can significantly reduce the feedback data, on GTD-based MIMO system and investigate the performance of the system. Interestingly, we found that compressed beamforming weights feedback does not degrade the BER performance of the system at low input power, while the channel estimation error and quantization do. For comparison, GTD is more sensitive to compression and quantization, while SVD is more sensitive to the channel estimation error. We also explore the performance of GTDbased MU-MIMO system, and find that the BER performance starts to degrade largely at around -20 dB channel estimation error.Keywords: MIMO, MU-MIMO, GTD, Imperfect CSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950730 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876729 Bioprocess Optimization Based On Relevance Vector Regression Models and Evolutionary Programming Technique
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte
Abstract:
This paper proposes a bioprocess optimization procedure based on Relevance Vector Regression models and evolutionary programming technique. Relevance Vector Regression scheme allows developing a compact and stable data-based process model avoiding time-consuming modeling expenses. The model building and process optimization procedure could be done in a half-automated way and repeated after every new cultivation run. The proposed technique was tested in a simulated mammalian cell cultivation process. The obtained results are promising and could be attractive for optimization of industrial bioprocesses.
Keywords: Bioprocess optimization, Evolutionary programming, Relevance Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195728 Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel
Authors: Wei Zhang, Su-Yan Tang, Yi-Fan Zhu, Wei-Ping Wang
Abstract:
Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595727 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706726 A Content Vector Model for Text Classification
Authors: Eric Jiang
Abstract:
As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.Keywords: Feature Selection, Latent Semantic Indexing, Text Classification, Vector Space Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885725 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique
Authors: Karchung, S. Ruangsinchaiwanich
Abstract:
This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.
Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965724 FPGA Based Implementation of Simplified Space Vector PWM Algorithm for Multilevel Inverter Fed Induction Motor Drives
Authors: Tapan Trivedi, Pramod Agarwal, Rajendrasinh Jadeja, Pragnesh Bhatt
Abstract:
Space Vector Pulse Width Modulation is popular for variable frequency drives. The method has several advantages over carried based PWM and is computation intensive. The implementation of SVPWM for multilevel inverter requires special attention and at the same time consumes considerable resources. Due to faster processing power and reduced over all computational burden, FPGAs are being investigated as an alternative for other controllers. In this paper, a space vector PWM algorithm is implemented using FPGA which requires less computational area and is modular in structure. The algorithm is verified experimentally for Neutral Point Clamped inverter using FPGA development board xc3s5000-4fg900.Keywords: Modular structure, Multilevel inverter, Space Vector PWM, Switching States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428723 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831722 0.13-μm CMOS Vector Modulator for Wireless Backhaul System
Authors: J. S. Kim, N. P. Hong
Abstract:
In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².
Keywords: CMOS, vector modulator, backhaul, 802.11ac.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258