Search results for: UD covariance factorization
49 Two New Relative Efficiencies of Linear Weighted Regression
Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian
Abstract:
In statistics parameter theory, usually the parameter estimations have two kinds, one is the least-square estimation (LSE), and the other is the best linear unbiased estimation (BLUE). Due to the determining theorem of minimum variance unbiased estimator (MVUE), the parameter estimation of BLUE in linear model is most ideal. But since the calculations are complicated or the covariance is not given, people are hardly to get the solution. Therefore, people prefer to use LSE rather than BLUE. And this substitution will take some losses. To quantize the losses, many scholars have presented many kinds of different relative efficiencies in different views. For the linear weighted regression model, this paper discusses the relative efficiencies of LSE of β to BLUE of β. It also defines two new relative efficiencies and gives their lower bounds.Keywords: Linear weighted regression, Relative efficiency, Lower bound, Parameter estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211848 The Effectiveness of Metaphor Therapy on Depression among Female Students
Authors: Marzieh Talebzadeh Shoushtari
Abstract:
The present study aimed to determine the effectiveness of Metaphor therapy on depression among female students. The sample included 60 female students with depression symptoms selected by simple sampling and randomly divided into two equal groups (experimental and control groups). Beck Depression Inventory was used to measure the variables. This was an experimental study with a pre-test/post-test design with control group. Eight metaphor therapy sessions were held for the experimental group. A post-test was administered to both groups. Data were analyzed using multivariate analysis of covariance (MANCOVA). Results showed that the Metaphor therapy decreased depression in the experimental group compared to the control group.Keywords: Metaphor therapy, depression, female, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274347 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207146 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229045 The Effect of Nonnormality on CB-SEM and PLS-SEM Path Estimates
Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim
Abstract:
The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are nonnormal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and nonnormality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under nonnormality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.
Keywords: CB-SEM, Monte Carlo simulation, Normality conditions, Nonnormality, PLS-SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513944 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
Authors: Naushad Mamode Khan
Abstract:
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood-based estimating methodology. The joint generalized quasi-likelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill-conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQL-III) that is based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.
Keywords: Longitudinal, Com-Poisson, Ill-conditioned, INAR(1), GLMS, GQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177643 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition
Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu
Abstract:
In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.Keywords: Biometry, image processing, pattern recognition, speech analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194442 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157541 Influence of Port Geometry on Thrust Transient of Solid Propellant Rockets at Liftoff
Authors: Karuppasamy Pandian. M, Krishna Raj. K, Sabarinath. K, Sandeep. G, Sanal Kumar. V.R.
Abstract:
Numerical studies have been carried out using a two dimensional code to examine the influence of pressure / thrust transient of solid propellant rockets at liftoff. This code solves unsteady Reynolds-averaged thin-layer Navier–Stokes equations by an implicit LU-factorization time-integration method. The results from the parametric study indicate that when the port is narrow there is a possibility of increase in pressure / thrust-rise rate due to relatively high flame spread rate. Parametric studies further reveal that flame spread rate can be altered by altering the propellant properties, igniter jet characteristics and nozzle closure burst pressure without altering the grain configuration and/or the mission demanding thrust transient. We observed that when the igniter turbulent intensity is relatively low the vehicle could liftoff early due to the early flow choking of the rocket nozzle. We concluded that the high pressurization-rate has structural implications at liftoff in addition to transient burning effect. Therefore prudent selection of the port geometry and the igniter, for meeting the mission requirements, within the given envelop are meaningful objectives for any designer for the smooth liftoff of solid propellant rockets.Keywords: Igniter Characteristics, Solid Propellant Rocket, SRM Liftoff, Starting Thrust Transient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 278440 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model
Authors: Satoshi Usami
Abstract:
Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.
Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186739 Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System
Authors: Ming-Hui Lee, Tsung-Chien Chen, Yuh-Shiou Tai
Abstract:
The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.Keywords: Fuzzy Input Estimator, Kalman Filter, RecursiveLeast Square Estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139638 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.
Keywords: Antenna array, signal detection, ToA, AoA estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204737 Discrete Polynomial Moments and Savitzky-Golay Smoothing
Authors: Paul O'Leary, Matthew Harker
Abstract:
This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279036 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.
Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38935 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries
Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis
Abstract:
In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.
Keywords: CFD, CMA evolution strategy, DEM, magnetic navigation, spherical particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52934 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh
Abstract:
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182233 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature
Authors: Iman Iraei, Mina Sharifi
Abstract:
A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81132 Spatio-Temporal Analysis and Mapping of Malaria in Thailand
Authors: Krisada Lekdee, Sunee Sammatat, Nittaya Boonsit
Abstract:
This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms.
Keywords: Bayesian method, generalized linear mixed model (GLMM), malaria, spatial effects, temporal correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214731 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.
Keywords: Adaptive estimation, fault detection, GNSS, residual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255530 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills
Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li
Abstract:
Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.
Keywords: Nanotechnology, science education, project-based learning, information and communication technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207529 Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid
Authors: Sunitha. S.L., V. Udayashankara
Abstract:
Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.Keywords: Hearing Impairment, DCT Adaptive filter, Sensorineural loss patients, Convergence rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217128 A Degraded Practical MIMOME Channel: Issues Insecret Data Communications
Authors: Mohammad Rakibul Islam
Abstract:
In this paper, a Gaussian multiple input multiple output multiple eavesdropper (MIMOME) channel is considered where a transmitter communicates to a receiver in the presence of an eavesdropper. We present a technique for determining the secrecy capacity of the multiple input multiple output (MIMO) channel under Gaussian noise. We transform the degraded MIMOME channel into multiple single input multiple output (SIMO) Gaussian wire-tap channels and then use scalar approach to convert it into two equivalent multiple input single output (MISO) channels. The secrecy capacity model is then developed for the condition where the channel state information (CSI) for main channel only is known to the transmitter. The results show that the secret communication is possible when the eavesdropper channel noise is greater than a cutoff noise level. The outage probability is also analyzed of secrecy capacity is also analyzed. The effect of fading and outage probability is also analyzed.
Keywords: Secrecy capacity, MIMO, wiretap channel, covariance matrix, fading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157627 Exploring the Availability and Distribution of Public Green Spaces among Riyadh Residential Neighborhoods
Authors: Abdulwahab Alalyani, Mahbub Rashid
Abstract:
Public green space promotes community health including daily activities, but these resources may not be available enough or may not equitably be distributed. This paper measures and compares the availability of public green spaces (PGS) among low, middle, and high-income neighborhoods in the Riyadh city. Additionally, it compares the total availability of PGS to WHO standard and Dubai availability of PGS per person. All PGS were mapped using geographical information systems, and total area availability of PGS compared to WHO and Dubai standards. To evaluate the significant differences in PGS availability across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences. As a result, by comparing PGS of Riyadh neighborhoods to WHO and Dubai-availability, it was found that Riyadh PGS were lower than the minimum standard of WHO and as well as Dubai. Riyadh has only 1.13 m2 per capita of PGS. The second finding, the availability of PGS, was significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of PGS should be focused on increasing PGS availability and should be given priority to those low-income and unhealthy communities.
Keywords: Spatial equity, green space, healthy city, quality of life, income, built environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67926 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signalis is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.
Keywords: GLRT, Neumann-Pearson’s criterion, test-statistics, degradation, spatial processing, multielement antenna array
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180625 Effects of Computer–Based Instructional Designs among Pupils of Different Music Intelligence Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong
Abstract:
The purpose of this study was to investigate the effects of computer–based instructional designs, namely modality and redundancy principles on the attitude and learning of music theory among primary pupils of different Music Intelligence levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was music intelligence. The dependent variables were the post test score. ANOVA was used to determine the significant differences of the pretest scores among the three groups. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variables. High music intelligence pupils performed significantly better than low music intelligence pupils in all the three treatment modes. The AI mode was found to help pupils with low music intelligence significantly more than the TI and AIT modes.
Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Musicintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166924 Modality and Redundancy Effects on Music Theory Learning Among Pupils of Different Anxiety Levels
Authors: Soon Fook Fong, Aldalalah, M. Osamah
Abstract:
The purpose of this study was to investigate effects of modality and redundancy principles on music theory learning among pupils of different anxiety levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was the anxiety level, while the dependent variable was the post test score. The study sample consisted of 405 third-grade pupils. Descriptive and inferential statistics were conducted to analyze the collected data. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variable. The findings of this study showed that medium anxiety pupils performed significantly better than low and high anxiety pupils in all the three treatment modes. The AI mode was found to help pupils with high anxiety significantly more than the TI and AIT modes.Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213623 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools
Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz
Abstract:
The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.
Keywords: Hearing-impaired children, hearing aids, hearing aids maintenance skill, and motion graphics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57522 Effect of Teaching Games for Understanding Approach on Students- Cognitive Learning Outcome
Authors: Malathi Balakrishnan, Shabeshan Rengasamy, Mohd Salleh Aman
Abstract:
The study investigated the effects of Teaching Games for Understanding approach on students ‘cognitive learning outcome. The study was a quasi-experimental non-equivalent pretest-posttest control group design whereby 10 year old primary school students (n=72) were randomly assigned to an experimental and a control group. The experimental group students were exposed with TGfU approach and the control group with the Traditional Skill approach of handball game. Game Performance Assessment Instrument (GPAI) was used to measure students' tactical understanding and decision making in 3 versus 3 handball game situations. Analysis of covariance (ANCOVA) was used to analyze the data. The results reveal that there was a significant difference between the TGfU approach group and the traditional skill approach group students on post test score (F (1, 69) = 248.83, p < .05). The findings of this study suggested the importance of TGfU approach to improve primary students’ tactical understanding and decision making in handball game.Keywords: Constructivism, learning outcome, tactical understanding, and Teaching Game for Understanding (TGfU)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460321 E-Government Continuance Intention of Media Psychology: Some Insights from Psychographic Characteristics
Authors: Azlina Binti Abu Bakar, Fahmi Zaidi Bin Abdul Razak, Wan Salihin Wong Abdullah
Abstract:
Psychographic is a psychological study of values, attitudes, interests and it is used mostly in prediction, opinion research and social research. This study predicts the influence of performance expectancy, effort expectancy, social influence and facilitating condition on e-government acceptance among Malaysian citizens. The survey responses of 543 e-government users have been validated and analyzed by means of covariance-based Structural Equation Modeling. The findings indicate that e-government acceptance among Malaysian citizens are mainly influenced by performance expectancy (β = 0.66, t = 11.53, p < 0.01) and social influence (β = 0.20, t = 4.23, p < 0.01). Surprisingly, there is no significant effect of facilitating condition and effort expectancy on e-government continuance intention (β = 0.01, t = 0.27, p > 0.05; β = -0.01, t = -0.40, p > 0.05). This study offers government and vendors a frame of reference to analyze citizen’s situation before initiating new innovations. In case of Malaysian e-government technology, adoption strategies should be built around fostering level of citizens’ technological expectation and social influence on e-government usage.
Keywords: Continuance intention, Malaysian citizens, media psychology, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139520 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error
Authors: Hong Son Hoang, Remy Baraille
Abstract:
This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298