Search results for: Stochastic User Equilibrium
1730 Stochastic Resonance in Nonlinear Signal Detection
Authors: Youguo Wang, Lenan Wu
Abstract:
Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.Keywords: Probability of detection error, signal detection, stochastic resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331729 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8581728 Efficient Web Usage Mining Based on K-Medoids Clustering Technique
Authors: P. Sengottuvelan, T. Gopalakrishnan
Abstract:
Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961727 Likelihood Estimation for Stochastic Epidemics with Heterogeneous Mixing Populations
Authors: Yilun Shang
Abstract:
We consider a heterogeneously mixing SIR stochastic epidemic process in populations described by a general graph. Likelihood theory is developed to facilitate statistic inference for the parameters of the model under complete observation. We show that these estimators are asymptotically Gaussian unbiased estimates by using a martingale central limit theorem.Keywords: statistic inference, maximum likelihood, epidemicmodel, heterogeneous mixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14091726 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10201725 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays
Authors: Shu Lü, Shouming Zhong, Zixin Liu
Abstract:
In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14361724 An efficient Activity Network Reduction Algorithm based on the Label Correcting Tracing Algorithm
Authors: Weng Ming Chu
Abstract:
When faced with stochastic networks with an uncertain duration for their activities, the securing of network completion time becomes problematical, not only because of the non-identical pdf of duration for each node, but also because of the interdependence of network paths. As evidenced by Adlakha & Kulkarni [1], many methods and algorithms have been put forward in attempt to resolve this issue, but most have encountered this same large-size network problem. Therefore, in this research, we focus on network reduction through a Series/Parallel combined mechanism. Our suggested algorithm, named the Activity Network Reduction Algorithm (ANRA), can efficiently transfer a large-size network into an S/P Irreducible Network (SPIN). SPIN can enhance stochastic network analysis, as well as serve as the judgment of symmetry for the Graph Theory.Keywords: Series/Parallel network, Stochastic network, Network reduction, Interdictive Graph, Complexity Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13791723 A Multi-Objective Model for Supply Chain Network Design under Stochastic Demand
Authors: F. Alborzi, H. Vafaei, M.H. Gholami, M.M. S. Esfahani
Abstract:
In this article, the design of a Supply Chain Network (SCN) consisting of several suppliers, production plants, distribution centers and retailers, is considered. Demands of retailers are considered stochastic parameters, so we generate amounts of data via simulation to extract a few demand scenarios. Then a mixed integer two-stage programming model is developed to optimize simultaneously two objectives: (1) minimization the fixed and variable cost, (2) maximization the service level. A weighting method is utilized to solve this two objective problem and a numerical example is made to show the performance of the model.Keywords: Mixed Integer Programming, Multi-objective Optimization, Stochastic Demand, Supply Chain Design, Two Stage Programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23211722 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: Probability, Stochastic, Probability density function, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451721 Low-Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effects of these random errors, they must be accurately modeled. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52771720 Increasing Performance of Autopilot Guided Small Unmanned Helicopter
Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya
Abstract:
In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.Keywords: Small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361719 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays
Authors: Mengzhuo Luo, Shouming Zhong
Abstract:
This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.
Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271718 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: Diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion equation, trends functions, bi-parameters Weibull density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671717 Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene
Authors: V. K. Rattan, Baljinder K. Gill, Seema Kapoor
Abstract:
Isobaric vapor-liquid equilibrium measurements are reported for binary mixture of 2-Methyltetrahydrofuran and Cumene at 97.3 kPa. The data were obtained using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows slight negative deviation from ideality. The system does not form an azeotrope. The experimental data obtained in this study are thermodynamically consistent according to the Herington test. The activity coefficients have been satisfactorily correlated by means of the Margules, and NRTL equations. Excess Gibbs free energy has been calculated from the experimental data. The values of activity coefficients have also been obtained by the UNIFAC group contribution method.Keywords: Binary mixture, 2-Methyltetrahydrofuran, Cumene, Vapor-liquid equilibrium, UNIFAC, Excess Gibbs free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27191716 A Novel Approach of Route Choice in Stochastic Time-varying Networks
Authors: Siliang Wang, Minghui Wang
Abstract:
Many exist studies always use Markov decision processes (MDPs) in modeling optimal route choice in stochastic, time-varying networks. However, taking many variable traffic data and transforming them into optimal route decision is a computational challenge by employing MDPs in real transportation networks. In this paper we model finite horizon MDPs using directed hypergraphs. It is shown that the problem of route choice in stochastic, time-varying networks can be formulated as a minimum cost hyperpath problem, and it also can be solved in linear time. We finally demonstrate the significant computational advantages of the introduced methods.Keywords: Markov decision processes (MDPs), stochastictime-varying networks, hypergraphs, route choice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551715 Stochastic Learning Algorithms for Modeling Human Category Learning
Authors: Toshihiko Matsuka, James E. Corter
Abstract:
Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16291714 Profit Optimization for Solar Plant Electricity Production
Authors: Fl. Loury, P. Sablonière
Abstract:
In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.
Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.
Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261713 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification
Authors: Ginalber L. O. Serra
Abstract:
This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911712 Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling
Authors: Xin Zhao, Yin-fan Zhu, Wei-ping Wang, Qun Li
Abstract:
The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.
Keywords: Time-sliced influence diagrams, discrete event systems, dynamic-stochastic influence diagrams, modeling formalism, simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14321711 The Effect of Culture on User Interface Design of Social Media - A Case Study on Preferences of Saudi Arabians on the Arabic User Interface of Facebook
Authors: Hana Almakky, Reza Sahandi, Jacqui Taylor
Abstract:
Social media continues to grow, and user interfaces may become more appealing if cultural characteristics are incorporated into their design. Facebook was designed in the west, and the original language was English. Subsequently, the words in the user interface were translated to other languages, including Arabic. Arabic words are written from right to left, and English is written from left to right. The translated version may misrepresent the original design and users’ preferences may be influenced by their culture, which should be considered in the user interface design. Previous research indicates that users are more comfortable when interacting with a user interface, which relates to their own culture. Therefore, this paper, using a survey, investigates the preferences of Saudi Arabians on the Arabic version of the user interface of Facebook.
Keywords: Culture, Facebook, Saudi Arabia, Social media, User Interface Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36551710 Equilibrium and Rate Based Simulation of MTBE Reactive Distillation Column
Authors: Debashish Panda, Kannan A.
Abstract:
Equilibrium and rate based models have been applied in the simulation of methyl tertiary-butyl ether (MTBE) synthesis through reactive distillation. Temperature and composition profiles were compared for both the models and found that both the profiles trends, though qualitatively similar are significantly different quantitatively. In the rate based method (RBM), multicomponent mass transfer coefficients have been incorporated to describe interphase mass transfer. MTBE mole fraction in the bottom stream is found to be 0.9914 in the Equilibrium Model (EQM) and only 0.9904 for RBM when the same column configuration was preserved. The individual tray efficiencies were incorporated in the EQM and simulations were carried out. Dynamic simulation have been also carried out for the two column configurations and compared.
Keywords: Aspen Plus, equilibrium stage model, methyl tertiary-butyl ether, rate based model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49131709 Towards an Extended SQLf: Bipolar Query Language with Preferences
Authors: L. Ludovic, R. Daniel, S-E Tbahriti
Abstract:
Database management systems that integrate user preferences promise better solution for personalization, greater flexibility and higher quality of query responses. This paper presents a tentative work that studies and investigates approaches to express user preferences in queries. We sketch an extend capabilities of SQLf language that uses the fuzzy set theory in order to define the user preferences. For that, two essential points are considered: the first concerns the expression of user preferences in SQLf by so-called fuzzy commensurable predicates set. The second concerns the bipolar way in which these user preferences are expressed on mandatory and/or optional preferences.
Keywords: Flexible query language, relational database, userpreference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10131708 Intelligent Process and Model Applied for E-Learning Systems
Authors: Mafawez Alharbi, Mahdi Jemmali
Abstract:
E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.
Keywords: Artificial intelligence, architecture, e-learning, software engineering, processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10931707 Isobaric Vapor-Liquid Equilibrium Data for Binary Mixtures of n-Butylamine and Triethylamine with Cumene at 97.3 kPa
Authors: Baljinder K. Gill, V. K. Rattan, Seema Kapoor
Abstract:
Isobaric vapor-liquid equilibrium measurements are reported for the binary mixtures of n-Butylamine and Triethylamine with Cumene at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. The binary mixture of n-Butylamine + Cumene shows positive deviation from ideality. Triethylamine + Cumene mixture shows negligible deviation from ideality. None of the systems form an azeotrope. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency test of Herington. The activity coefficients have been satisfactorily correlated by means of the Margules, NRTL, and Black equations. The activity coefficient values obtained by the UNIFAC model are also reported.
Keywords: Binary mixture, cumene, n-butylamine, triethylamine, vapor-liquid equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19151706 Measurement Scheme Improving for State Estimation Using Stochastic Tabu Search
Authors: T. Kerdchuen
Abstract:
This paper proposes the stochastic tabu search (STS) for improving the measurement scheme for power system state estimation. If the original measured scheme is not observable, the additional measurements with minimum number of measurements are added into the system by STS so that there is no critical measurement pair. The random bit flipping and bit exchanging perturbations are used for generating the neighborhood solutions in STS. The Pδ observable concept is used to determine the network observability. Test results of 10 bus, IEEE 14 and 30 bus systems are shown that STS can improve the original measured scheme to be observable without critical measurement pair. Moreover, the results of STS are superior to deterministic tabu search (DTS) in terms of the best solution hit.Keywords: Measurement Scheme, Power System StateEstimation, Network Observability, Stochastic Tabu Search (STS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12751705 A Frame Work for Query Results Refinement in Multimedia Databases
Authors: Humaira Liaquat, Nadeem Iftikhar, Shaukat Ali, Zohaib Zafar Iqbal
Abstract:
In the current age, retrieval of relevant information from massive amount of data is a challenging job. Over the years, precise and relevant retrieval of information has attained high significance. There is a growing need in the market to build systems, which can retrieve multimedia information that precisely meets the user's current needs. In this paper, we have introduced a framework for refining query results before showing it to the user, using ambient intelligence, user profile, group profile, user location, time, day, user device type and extracted features. A prototypic tool was also developed to demonstrate the efficiency of the proposed approach.Keywords: Context aware retrieval, Information retrieval, Ambient Intelligence, Multimedia databases, User and group profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471704 Finding Equilibrium in Transport Networks by Simulation and Investigation of Behaviors
Authors: Gábor Szűcs, Gyula Sallai
Abstract:
The goal of this paper is to find Wardrop equilibrium in transport networks at case of uncertainty situations, where the uncertainty comes from lack of information. We use simulation tool to find the equilibrium, which gives only approximate solution, but this is sufficient for large networks as well. In order to take the uncertainty into account we have developed an interval-based procedure for finding the paths with minimal cost using the Dempster-Shafer theory. Furthermore we have investigated the users- behaviors using game theory approach, because their path choices influence the costs of the other users- paths.Keywords: Dempster-Shafer theory, S-O and U-Otransportation network, uncertainty of information, Wardropequilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15301703 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Itô chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition method using the Wiener-Itô chaos expansion. Once the approximation of the solution is performed using the finite element method for example, the statistics of the numerical solution can be easily evaluated.
Keywords: Eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Itô chaos expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20161702 The Effects of Misspecification of Stochastic Processes on Investment Appraisal
Authors: George Yungchih Wang
Abstract:
For decades financial economists have been attempted to determine the optimal investment policy by recognizing the option value embedded in irreversible investment whose project value evolves as a geometric Brownian motion (GBM). This paper aims to examine the effects of the optimal investment trigger and of the misspecification of stochastic processes on investment in real options applications. Specifically, the former explores the consequence of adopting optimal investment rules on the distributions of corporate value under the correct assumption of stochastic process while the latter analyzes the influence on the distributions of corporate value as a result of the misspecification of stochastic processes, i.e., mistaking an alternative process as a GBM. It is found that adopting the correct optimal investment policy may increase corporate value by shifting the value distribution rightward, and the misspecification effect may decrease corporate value by shifting the value distribution leftward. The adoption of the optimal investment trigger has a major impact on investment to such an extent that the downside risk of investment is truncated at the project value of zero, thereby moving the value distributions rightward. The analytical framework is also extended to situations where collection lags are in place, and the result indicates that collection lags reduce the effects of investment trigger and misspecification on investment in an opposite way.
Keywords: GBM, real options, investment trigger, misspecification, collection lags
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15131701 The Influence of Mobile Phone's Forms in the User Perception
Authors: The Jaya Suteja, Stephany Tedjohartoko
Abstract:
Not all types of mobile phone are successful in entering the market because some types of the mobile phone have a negative perception of user. Therefore, it is important to understand the influence of mobile phone's characteristics in the local user perception. This research investigates the influence of QWERTY mobile phone's forms in the perception of Indonesian user. First, some alternatives of mobile phone-s form are developed based on a certain number of mobile phone's models. At the second stage, some word pairs as design attributes of the mobile phone are chosen to represent the user perception of mobile phone. At the final stage, a survey is conducted to investigate the influence of the developed form alternatives to the user perception. Based on the research, users perceive mobile phone's form with curved top and straight bottom shapes and mobile phone's form with slider and antenna as the most negative form. Meanwhile, mobile phone's form with curved top and bottom shapes and mobile phone-s form without slider and antenna are perceived by the user as the most positive form.
Keywords: Influence, mobile phone, form, user perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370