Search results for: Precipitation prediction
1129 Protein Residue Contact Prediction using Support Vector Machine
Authors: Chan Weng Howe, Mohd Saberi Mohamad
Abstract:
Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.Keywords: contact map, protein residue contact, support vector machine, protein structure prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961128 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: Prediction of financial markets, Adaptive methods, MSE, LSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10201127 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761126 Heat Treatment of Aluminum Alloy 7449
Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes
Abstract:
Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40761125 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49901124 A Decision Tree Approach to Estimate Permanent Residents Using Remote Sensing Data in Lebanese Municipalities
Authors: K. Allaw, J. Adjizian Gerard, M. Chehayeb, A. Raad, W. Fahs, A. Badran, A. Fakherdin, H. Madi, N. Badaro Saliba
Abstract:
Population estimation using Geographic Information System (GIS) and remote sensing faces many obstacles such as the determination of permanent residents. A permanent resident is an individual who stays and works during all four seasons in his village. So, all those who move towards other cities or villages are excluded from this category. The aim of this study is to identify the factors affecting the percentage of permanent residents in a village and to determine the attributed weight to each factor. To do so, six factors have been chosen (slope, precipitation, temperature, number of services, time to Central Business District (CBD) and the proximity to conflict zones) and each one of those factors has been evaluated using one of the following data: the contour lines map of 50 m, the precipitation map, four temperature maps and data collected through surveys. The weighting procedure has been done using decision tree method. As a result of this procedure, temperature (50.8%) and percentage of precipitation (46.5%) are the most influencing factors.
Keywords: Remote sensing and GIS, permanent residence, decision tree, Lebanon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10101123 Crude Oil Price Prediction Using LSTM Networks
Authors: Varun Gupta, Ankit Pandey
Abstract:
Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.
Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37121122 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction
Authors: Tarek Aboueldahab
Abstract:
In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.
Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041121 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings
Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank
Abstract:
Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].Keywords: data mining, protein secondary structure prediction, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961120 Urban Growth Prediction in Athens, Greece, Using Artificial Neural Networks
Authors: D. Triantakonstantis, D. Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modelling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modelling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.
Keywords: Artificial Neural Networks, CORINE, Urban Atlas, Urban Growth Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34511119 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010
Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve
Abstract:
Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration (CSCD) during 1944-2010 over Pelso, central Finland. Mann- Kendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.
Keywords: Variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19151118 Study on Extraction of Lanthanum Oxide from Monazite Concentrate
Authors: Nwe Nwe Soe, Lwin Thuzar Shwe, Kay Thi Lwin
Abstract:
Lanthanum oxide is to be recovered from monazite, which contains about 13.44% lanthanum oxide. The principal objective of this study is to be able to extract lanthanum oxide from monazite of Moemeik Myitsone Area. The treatment of monazite in this study involves three main steps; extraction of lanthanum hydroxide from monazite by using caustic soda, digestion with nitric acid and precipitation with ammonium hydroxide and calcination of lanthanum oxalate to lanthanum oxide.Keywords: Calcination, Digestion, Precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40341117 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30221116 Empirical Statistical Modeling of Rainfall Prediction over Myanmar
Authors: Wint Thida Zaw, Thinn Thu Naing
Abstract:
One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.Keywords: Polynomial Regression, Rainfall Forecasting, Statistical forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26341115 Building the Reliability Prediction Model of Component-Based Software Architectures
Authors: Pham Thanh Trung, Huynh Quyet Thang
Abstract:
Reliability is one of the most important quality attributes of software. Based on the approach of Reussner and the approach of Cheung, we proposed the reliability prediction model of component-based software architectures. Also, the value of the model is shown through the experimental evaluation on a web server system.
Keywords: component-based architecture, reliability prediction model, software reliability engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14221114 Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process
Authors: K. Geethalakshmi, T. Prabhakaran, J. Hemalatha
Abstract:
Nano sized zirconium dioxide in monoclinic phase (m-ZrO2) has been synthesized in pure form through co-precipitation processing at different calcination temperatures and has been characterized by several techniques such as XRD, FT-IR, UV-Vis Spectroscopy and SEM. The dielectric and capacitance values of the pelletized samples have been examined at room temperature as the functions of frequency. The higher dielectric constant value of the sample having larger grain size proves the strong influence of grain size on the dielectric constant.
Keywords: capacitance, dielectric constant, m-ZrO2, nano zirconia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40331113 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: Software Metrics, Fault prediction, Cross project, Within project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25461112 Selective Sulfidation of Copper, Zinc and Nickelin Plating Wastewater using Calcium Sulfide
Authors: K. Soya, N. Mihara, D. Kuchar, M. Kubota, H. Matsuda, T. Fukuta
Abstract:
The present work is concerned with sulfidation of Cu, Zn and Ni containing plating wastewater with CaS. The sulfidation experiments were carried out at a room temperature by adding solid CaS to simulated metal solution containing either single-metal of Ni, Zn and Cu, or Ni-Zn-Cu mixture. At first, the experiments were conducted without pH adjustment and it was found that the complete sulfidation of Zn and Ni was achieved at an equimolar ratio of CaS to a particular metal. However, in the case of Cu, a complete copper sulfidation was achieved at CaS to Cu molar ratio of about 2. In the case of the selective sulfidation, a simulated plating solution containing Cu, Zn and Ni at the concentration of 100 mg/dm3 was treated with CaS under various pH conditions. As a result, selective precipitation of metal sulfides was achieved by a sulfidation treatment at different pH values. Further, the precipitation agents of NaOH, Na2S and CaS were compared in terms of the average specific filtration resistance and compressibility coefficients of metal sulfide slurry. Consequently, based on the lowest filtration parameters of the produced metal sulfides, it was concluded that CaS was the most effective precipitation agent for separation and recovery of Cu, Zn and Ni.Keywords: Calcium sulfide, Plating Wastewater, Filtrationcharacteristics, Heavy metals, Sulfidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32181111 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051110 Effect of Formulation Compositions on Particle Size and Zeta Potential of Diclofenac Sodium-Loaded Chitosan Nanoparticles
Authors: Rathapon Asasutjarit, Chayanid Sorrachaitawatwong, Nardauma Tipchuwong, Sirijit Pouthai
Abstract:
This study was conducted to formulate diclofenac sodium-loaded chitosan nanoparticles and to study the effect of formulation compositions on particle size and zeta potential of chitosan nanoparticles (CSN) containing diclofenac sodium (DC) prepared by ionotropic gelation method. It was found that the formulations containing chitosan, DC and tripolyphosphate (TPP) at a weight ratio of 4:1:1, respectively, with various pH provided various systems. At pH 5.0 and 6.0, the obtained systems were turbid because of precipitation of DC and chitosan, respectively. However, the dispersed system of CSN possessing diameter of 108±1 nm and zeta potential of 19±1 mV could be obtained at pH 5.5. These CSN also showed spherical morphology observed via a transmission scanning electron microscope. Change in weight ratio of chitosan:DC:TPP i.e. 1:1:1, 2:1:1, 3:1:1 and 4:1:1 showed that these ratios led to precipitation of particles except for the ratio of 4:1:1 providing CSN properly. The effect of Tween 80 as a stabilizer was also determined. It suggested that increment of Tween 80 concentration to 0.02% w/v could stabilize CSN at least 48 hours. However, increment of Tween 80 to 0.03% w/v led to quick precipitation of particles. The study of effect of TPP suggested that increment of TPP concentration increased particle size but decreased zeta potential. The excess TPP caused precipitation of CSN. Therefore, the optimized CSN was the CSN containing chitosan, DC and TPP at the ratio of 4:1:1and 0.02% w/v Tween 80 prepared at pH 5.5. Their particle size, zeta potential and entrapment efficiency were 128±1 nm, 15±1 mV and 45.8±2.6%, respectively.
Keywords: Chitosan nanoparticles, diclofenac sodium, size, zeta potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45371109 Trend Analysis of Annual Total Precipitation Data in Konya
Authors: Naci Büyükkaracığan
Abstract:
Hydroclimatic observation values are used in the planning of the project of water resources. Climate variables are the first of the values used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.Keywords: Trend analysis, precipitation, hydroclimatology, Konya, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10081108 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy
Authors: K. Petcharaporn, S. Kumchoo
Abstract:
The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it’s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.
Keywords: Tomato, quality, prediction, transmittance, titratable acidity, citric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27001107 The Investigation of Precipitation Conditions of Chevreul’s Salt
Authors: Turan Çalban, Fatih Sevim, Oral Laçin
Abstract:
In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.Keywords: Chevreul’s salt, copper sulphites, mixed-valence sulphite compounds, precipitating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161106 Grey Prediction Based Handoff Algorithm
Authors: Seyed Saeed Changiz Rezaei, Babak Hossein Khalaj
Abstract:
As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.
Keywords: Cellular network, Grey prediction, Handoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871105 Recurrent Radial Basis Function Network for Failure Time Series Prediction
Authors: Ryad Zemouri, Paul Ciprian Patic
Abstract:
An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181104 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671103 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541102 Impact of Faults in Different Software Systems: A Survey
Authors: Neeraj Mohan, Parvinder S. Sandhu, Hardeep Singh
Abstract:
Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.
Keywords: Fault prediction, Software Maintenance, Automated Fault Prediction, and Failure Mode Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791101 Using High Performance Computing for Online Flood Monitoring and Prediction
Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic
Abstract:
The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of a high performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice River catchment is presented that shows actual durations and their gain from the parallel implementation.
Keywords: Flood prediction process, High performance computing, Online flood prediction system, Parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23291100 Extraction of Bran Protein Using Enzymes and Polysaccharide Precipitation
Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim
Abstract:
Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which involves in chemical usage and lowering some nutritious component. This study was conducted in order to extract of rice bran protein concentrate (RBPC) from defatted rice bran using enzymes and employing polysaccharides in a precipitating step. The properties of RBPC obtained will be compared to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.016) exhibited the highest protein (27.55%) and yield (6.84%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming capacity and foaming stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products e.g. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.Keywords: Alginate, carrageenan, rice bran, rice bran protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666