Search results for: Nonlinear dynamical system
9039 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid
Authors: A. Giniatoulline
Abstract:
A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14319038 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18439037 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7139036 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input
Authors: Toshinori Nawata, Hitoshi Takata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14419035 River Flow Prediction Using Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23659034 Generalized Differential Quadrature Nonlinear Consolidation Analysis of Clay Layer with Time-Varied Drainage Conditions
Authors: A. Bahmanikashkouli, O.R. Bahadori Nezhad
Abstract:
In this article, the phenomenon of nonlinear consolidation in saturated and homogeneous clay layer is studied. Considering time-varied drainage model, the excess pore water pressure in the layer depth is calculated. The Generalized Differential Quadrature (GDQ) method is used for the modeling and numerical analysis. For the purpose of analysis, first the domain of independent variables (i.e., time and clay layer depth) is discretized by the Chebyshev-Gauss-Lobatto series and then the nonlinear system of equations obtained from the GDQ method is solved by means of the Newton-Raphson approach. The obtained results indicate that the Generalized Differential Quadrature method, in addition to being simple to apply, enjoys a very high accuracy in the calculation of excess pore water pressure.Keywords: Generalized Differential Quadrature method, Nonlinear consolidation, Nonlinear system of equations, Time-varied drainage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20289033 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique
Authors: B. Selma, S. Chouraqui
Abstract:
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.
Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17859032 Digital Image Encryption Scheme using Chaotic Sequences with a Nonlinear Function
Abstract:
In this study, a system of encryption based on chaotic sequences is described. The system is used for encrypting digital image data for the purpose of secure image transmission. An image secure communication scheme based on Logistic map chaotic sequences with a nonlinear function is proposed in this paper. Encryption and decryption keys are obtained by one-dimensional Logistic map that generates secret key for the input of the nonlinear function. Receiver can recover the information using the received signal and identical key sequences through the inverse system technique. The results of computer simulations indicate that the transmitted source image can be correctly and reliably recovered by using proposed scheme even under the noisy channel. The performance of the system will be discussed through evaluating the quality of recovered image with and without channel noise.Keywords: Digital image, Image encryption, Secure communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22389031 On the System of Nonlinear Rational Difference Equations
Authors: Qianhong Zhang, Wenzhuan Zhang
Abstract:
This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.
Keywords: Difference equations, stability, unstable, global asymptotic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24659030 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.
Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20709029 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14539028 A NonLinear Observer of an Electrical Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A , Israel Nuñez
Abstract:
A bond graph model of an electrical transformer including the nonlinear saturation is presented. A nonlinear observer for the transformer based on multivariable circle criterion in the physical domain is proposed. In order to show the saturation and hysteresis effects on the electrical transformer, simulation results are obtained. Finally, the paper describes that convergence of the estimates to the true states is achieved.Keywords: Bond graph, nonlinear observer, electrical transformer, nonlinear saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16179027 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.
Keywords: Dynamical localization, cavity optomechanics, hamiltonian chaos, probe field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7789026 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19629025 Adaptive Sliding Mode Observer for a Class of Systems
Abstract:
In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16619024 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums
Authors: I. Zamani, M. H. Zarif
Abstract:
In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.
Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25149023 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling
Authors: A. Puras Trueba, J. R. Llata García
Abstract:
A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23289022 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind
Authors: jianhua Hou, Changqing Yang, and Beibo Qin
Abstract:
A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.
Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14019021 Chaos Theory and Application in Foreign Exchange Rates vs. IRR (Iranian Rial)
Authors: M. A. Torkamani, S. Mahmoodzadeh, S. Pourroostaei, C. Lucas
Abstract:
Daily production of information and importance of the sequence of produced data in forecasting future performance of market causes analysis of data behavior to become a problem of analyzing time series. But time series that are very complicated, usually are random and as a result their changes considered being unpredictable. While these series might be products of a deterministic dynamical and nonlinear process (chaotic) and as a result be predictable. Point of Chaotic theory view, complicated systems have only chaotically face and as a result they seem to be unregulated and random, but it is possible that they abide by a specified math formula. In this article, with regard to test of strange attractor and biggest Lyapunov exponent probability of chaos on several foreign exchange rates vs. IRR (Iranian Rial) has been investigated. Results show that data in this market have complex chaotic behavior with big degree of freedom.
Keywords: Chaos, Exchange Rate, Nonlinear Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24779020 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge- Kutta solution using 38 time steps.Keywords: Impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19169019 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers
Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici
Abstract:
In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.Keywords: Inverted pendulum, model predictive control, swingup, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21939018 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations
Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir
Abstract:
A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.
Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59439017 Adaptive Nonlinear Backstepping Control
Authors: Sun Lim, Bong-Seok Kim
Abstract:
This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22289016 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.
Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9809015 Bifurcation Analysis of Horizontal Platform System
Authors: C. C. Wang, N. S. Pai, H. T. Yau, T. T. Liao, M. J. Jang, C. W. Lee, W. M. Hong
Abstract:
Horizontal platform system (HPS) is popularly applied in offshore and earthquake technology, but it is difficult and time-consuming for regulation. In order to understand the nonlinear dynamic behavior of HPS and reduce the cost when using it, this paper employs differential transformation method to study the bifurcation behavior of HPS. The numerical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, and chaotic responses. Furthermore, the results reveal the changes which take place in the dynamic behavior of the HPS as the external torque is increased. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of horizontal platform system.Keywords: horizontal platform system, differentialtransformation method, chaotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15289014 Radiation Damage as Nonlinear Evolution of Complex System
Authors: Pavlo Selyshchev
Abstract:
Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.Keywords: Irradiation, Primary Defects, Solids, Self-oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17339013 Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces
Authors: Roozbeh Keshmiri, Alireza Mohamad Shahri
Abstract:
Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.Keywords: Fuzzy Logic Control, ABS, Anti lock BrakingSystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37449012 Robust Adaptive Observer Design for Lipschitz Class of Nonlinear Systems
Authors: M. Pourgholi, V.J.Majd
Abstract:
This paper addresses parameter and state estimation problem in the presence of the perturbation of observer gain bounded input disturbances for the Lipschitz systems that are linear in unknown parameters and nonlinear in states. A new nonlinear adaptive resilient observer is designed, and its stability conditions based on Lyapunov technique are derived. The gain for this observer is derived systematically using linear matrix inequality approach. A numerical example is provided in which the nonlinear terms depend on unmeasured states. The simulation results are presented to show the effectiveness of the proposed method.
Keywords: Adaptive observer, linear matrix inequality, nonlinear systems, nonlinear observer, resilient observer, robust estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26139011 On the outlier Detection in Nonlinear Regression
Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam
Abstract:
The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31799010 Robust H8 Fuzzy Control Design for Nonlinear Two-Time Scale System with Markovian Jumps based on LMI Approach
Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang
Abstract:
This paper examines the problem of designing a robust H8 state-feedback controller for a class of nonlinear two-time scale systems with Markovian Jumps described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear two-time scale systems to have an H8 performance are derived. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard nonlinear two-time scale systems. A numerical example is provided to illustrate the design developed in this paper.
Keywords: TS fuzzy, Markovian jumps, LMI, two-time scale systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456